Reference: | Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. Ahlawat, S. and Choudhary, A. (2020). Hybrid cnn-svm classifier for handwritten digit recognition. Procedia Computer Science, 167:2554–2560. International Conference on Computational Intelligence and Data Science. Aydemir, G., Paynabar, K., and Acar, B. (2022). Robust feature learning for remaining useful life estimation using siamese neural networks. In 2022 30th European Signal Processing Conference (EUSIPCO), pages 1432–1436. Benkaddour, M. and Bounoua, A. (2017). Feature extraction and classification using deep convolutional neural networks, pca and svc for face recognition. Traitement du signal, 34:77–91. Breiman, L. (2001). Random forests. Machine Learning, 45:5–32. Bromley, J., Bentz, J. W., Bottou, L., Guyon, I. M., LeCun, Y., Moore, C., Säckinger, E., and Shah, R. (1993). Signature verification using a ”siamese” time delay neural network. Int. J. Pattern Recognit. Artif. Intell., 7:669–688. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P., and Lukasik, S. (2012). Seeds. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5H30K. Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM. Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546 vol.1. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297. Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21–27. Durkota, K., Linda, M., Ludvik, M., and Tozicka, J. (2020). Neuron-net: Siamese network for anomaly detection. Technical report, DCASE2020 Challenge, Tech. Rep. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5):1189 – 1232. Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9:1735–80. Jmila, H., Ibn Khedher, M., Blanc, G., and El Yacoubi, M. A. (2019). Siamese network based feature learning for improved intrusion detection. In Gedeon, T., Wong, K. W., and Lee, M., editors, Neural Information Processing, pages 377–389, Cham. Springer International Publishing. Koch, G., Zemel, R., Salakhutdinov, R., et al. (2015). Siamese neural networks for oneshot image recognition. In ICML deep learning workshop, volume 2. Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266):1332–1338. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551. Moustakidis, S. and Karlsson, P. (2020). A novel feature extraction methodology using siamese convolutional neural networks for intrusion detection. Cybersecurity, 3. Mowforth, P. and Shepherd, B. (1992). Statlog (Vehicle Silhouettes). UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5HG6N. O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019). Kerastuner. https://github.com/keras-team/keras-tuner. Ozkan, I. A., Koklu, M., and Saraçoğlu, R. (2021). Classification of pistachio species using improved k-nn classifier. Progress in Nutrition, 23:e2021044. Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572. Rumelhart, D. E. and McClelland, J. L. (1987). Learning Internal Representations by Error Propagation, pages 318–362. MIT Press. Sengupta, D., Ali, S. N., Bhattacharya, A., Mustafi, J., Mukhopadhyay, A., and Sengupta, K. (2022). A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology. PLOS ONE, 17(1):1–20. Siegler, R. (1994). Balance Scale. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5488X. Tsalera, E., Papadakis, A., Samarakou, M., and Voyiatzis, I. (2022). Feature extraction with handcrafted methods and convolutional neural networks for facial emotion recognition. Applied Sciences, 12:8455. |