政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152781
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114105/145137 (79%)
造访人次 : 52172771      在线人数 : 585
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152781


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/152781


    题名: 超高維度圖模型估計以及其對判別分析的應用
    Estimation of Ultrahigh-Dimensional Graphical Models and Its Application to Discriminant Analysis
    作者: 曹卉姍
    Tsao, Hui-Shan
    贡献者: 陳立榜
    Chen, Li-Pang
    曹卉姍
    Tsao, Hui-Shan
    关键词: 提升
    變數選取
    測量誤差
    網路結構
    精確矩陣
    超高維度資料
    Boosting
    Feature screening
    Measurement error
    Network structure
    Precision matrix
    Ultrahigh-dimensional data
    日期: 2024
    上传时间: 2024-08-05 14:00:27 (UTC+8)
    摘要: 圖模型一直都是統計學習中一個熱門的主題,且其對分析高維度資料的
    網路結構是很有用的。雖然有許多可以處理複雜結構的方法已經被開發出來,
    但是他們大多受限於處理超高維度以及有測量誤差的資料,其中前者反映了變
    數維度大於樣本數,而後者則是眾所周知的測量誤差問題。為了能應對這些挑
    戰並得出可靠的圖形結構的估計結果,我們開發了一個有效的方法來消除測量
    誤差,並應用提升法來同時估計精確矩陣。所提出的方法適用於不同分佈以及
    變數間可能的非線性關係。此外,我們的方法可以避免不可微分的懲罰函數並
    提供簡單的實施方法。在包含模擬以及實際資料分析的數值研究中,我們發現
    所提出的方法可以準確地偵測網路結構,並優於其他現存方法。
    Graphical models have been one of popular topics in statistical learning and are useful
    to analyze the network structure of high-dimensional data. While a large body of
    estimation methods has been developed to address various complex structures, they are
    limited to handle ultrahigh-dimensional and error-prone data, where the former reflects
    that the dimension of variables is larger than the sample size, and the latter is wellknown measurement error problem. To tackle those challenges and derive reliable
    estimation for the graphical structure, we develop a valid method to eliminate the
    measurement error effects and apply the boosting procedure to estimate the precision
    matrix simultaneously. The proposed method is valid to handle various distributions
    and possibly nonlinear relationship among variables. Moreover, our method avoids
    non-differentiable penalty function and provides easy implementation. Throughout the
    numerical studies, including simulation and real data analysis, we find that the proposed
    method can detect network structure accurately, and outperforms the other existing
    methods.
    參考文獻: Brem, R., and Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences, 102, 1572–1577.
    Brown, B., Miller, C. J., and Wolfson, J. (2017). ThrEEBoost: Thresholded boosting for
    variable selection and prediction via estimating equations. Journal of Computational
    and Graphical Statistics, 26, 579–588.
    Cai, T. Liu, W., and Luo, X. (2011). A constrained ℓ1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106, 594–607.
    Cai, T. Liu, W., and Luo, X. (2011). Package clime: Constrained L1-Minimization for
    Inverse (Covariance) Matrix Estimation. https://CRAN.R-project.org/package=clime.
    Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement
    Error in Nonlinear Model. CRC Press Chapman and Hall, Boca Raton.
    Chatterjee, S. (2021). A new coefficient of correlation. Journal of the American Statistical
    Association, 116, 2009–2022.
    Chen, L.-P. (2020). Variable selection and estimation for the additive hazards model subject to left-truncation, right-censoring and measurement error in covariates. Journal of
    Statistical Computation and Simulation, 90, 3261–3300.
    Chen, L.-P. (2021). Feature screening based on distance correlation for ultrahigh-dimensional
    censored data with covariate measurement error. Computational Statistics, 36. 857–884.
    Chen, L.-P. (2022). Network-based discriminant analysis for multiclassification. Journal of
    Classification, 39. 410–431.
    Chen, L.-P. and Yi, G. Y. (2020). Model selection and model averaging for analysis of
    truncated and censored data with measurement error. Electronic Journal of Statistics,
    14, 4054–4109.
    Chen, L.-P. and Yi, G. Y. (2021a). Analysis of noisy survival data with graphical proportional hazards measurement error models. Biometrics, 77, 956–969.
    Chen, L.-P. and Yi, G. Y. (2021b). Semiparametric methods for left-truncated and
    right-censored survival data with covariate measurement error. Annals of the Institute
    of Statistical Mathematics, 73, 481–517.
    Chen, L.-P. and Yi, G. Y. (2022). De-noising analysis of noisy data under mixed graphical
    models. Electronic Journal of Statistics, 16, 3861–3909.
    Chen, L.-P. (2023a). Estimation of graphical models: An overview of selected topics. International Statistical Review, In press.
    Chen, L.-P. (2023b). A note of feature screening via a rank-based coefficient of correlation.
    Biometrical Journal, 65, 2100373.
    Chen, L.-P. (2023c). Variable selection and estimation for misclassified binary responses and
    multivariate error-prone predictors. Journal of Computational and Graphical Statistics,
    In press.
    Dalal, O. and Rajaratnam, B. (2017). Sparse Gaussian graphical model estimation via
    alternating minimization. Biometrika, 104, 379–395.
    Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation
    with the graphical lasso. Biostatistics, 9, 432–441.
    Friedman, J., Hastie, T., and Tibshirani, R. (2019). Package glasso: Graphical Lasso: Estimation of Gaussian Graphical Models. https://CRAN.R-project.org/package=glasso.
    Hossin, M., and Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining and Knowledge Management
    process, 5, 1–11.
    Hsieh, C.-J., Matyas A. Sustik, M.A., Dhillon, I.S., and Ravikumar, P. (2014) Package
    QUIC: Regularized sparse inverse covariance matrix estimation. https://CRAN.Rproject.org/package=QUIC.
    Jankov´a, J., and van de Geer, S. (2018). Inference in high-dimensional graphical models.
    In Handbook of Graphical Models Edited By Marloes Maathuis, Mathias Drton, Steffen
    Lauritzen, Martin Wainwright, 325–349. CRC Press, Boca Raton.
    Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F.,
    Schwab, M., Antonescu, C. R., Peterson, C., and Meltzer, P. S. (2001). Classification
    and diagnostic prediction of cancers using gene expression profiling and artificial neural
    networks. Nature Medicine, 7, 673–679.
    Klaassen, S., Kueck, J., and Spindler, M. (2023). Uniform Inference in High-Dimensional
    Gaussian Graphical Models. Biometrika, 110, 51–68.
    Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
    Accepted Article Mathematical Statistics, 22, 79–86.
    Lafferty, J., Liu, H., and Wasserman, L. (2012). Sparse nonparametric graphical models.
    Statistical Science, 27, 519–537.
    Li, T., Qian, C., Levina, E., and Zhu, J. (2020). High-dimensional gaussian graphical models
    on network-linked data. Journal of Machine Learning Research, 21, 1–45.
    Liang, S. and Liang, F. (2022). A double regression method for graphical modeling of highdimensional nonlinear and non-Gaussian data. Statistics and Its Interface, In press.
    Lin, L., Drton, M., and Shojaie, A. (2016). Estimation of high-dimensional graphical models
    using regularized score matching. Electronic Journal of Statistics, 10, 806–854.
    Liu, H., Han, F., Yuan, M., Lafferty, J.D., and Wasserman, L.A. (2012). High-dimensional
    semiparametric Gaussian copula graphical models. The Annals of Statistics, 40, 2293–2326.
    Liu, H., Lafferty, J.D., and Wasserman, L.A. (2009). The nonparanormal: semiparametric
    estimation of high dimensional undirected graphs. The Journal of Machine Learning
    Research, 10, 2295–2328.
    Liu, H. and Zhang, X. (2023). Frequentist model averaging for undirected Gaussian graphical
    models. Biometrics, 79, 2050–2062.
    Mazumder, R., and Hastie, T. (2012). Package dpglasso: Primal Graphical Lasso. https://CRAN.Rproject.org/package=dpglasso.
    Meinshausen, N. and B¨uhlmann, P. (2006). High-dimensional graphs and variable selection
    with the Lasso. The Annals of Statistics, 34, 1436–1462.
    Qiu, H., Han, F., Liu, H., and Caffo, B. (2016) Joint estimation of multiple graphical models
    from high dimensional time series. Journal of the Royal Statistical Society Series B:
    Statistical Methodology, 78, 487–504.
    Ravikumar, P., Wainwright, M. J., and Lafferty, J. (2010). High dimensional Ising model
    selection using ℓ1-regularized logistic regression. The Annals of Statistics, 38, 1287–1319.
    Ravikumar, P., Wainwright, M. J., Raskutti, G., and Yu, B. (2011). High-dimensional
    covariance estimation by minimizing ℓ1-penalized log determinant divergence. Electronic
    Journal of Statistics, 5, 935–980.
    Roy, A. and Dunson, D.B. (2020). Nonparametric graphical model for counts. Journal of
    Machine Learning Research, 21, 1–22.
    Shi, W., Ghosal, S., and Martin, R. (2021). Bayesian estimation of sparse precision matrices
    in the presence of Gaussian measurement error. Electronic Journal of Statistics, 15,
    4545–4579.
    Sun, H. and Li, H. (2012). Robust Gaussian graphical modeling via ℓ1-penalization. Biometrics, 68, 1197–1206.
    Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University Press, Cambridge.
    Wan, Y.-W., Allen, G. I., Baker, Y., Yang, E., Ravikumar, P., and Liu, Z. (2015). Package
    XMRF: Markov Random Fields for High-Throughput Genetics Data. https://cran.rproject.org/web/packages/XMRF/.
    Wang, L., Chen, Z., Wang, C. D., and Li, R. (2020). Ultrahigh dimensional precision matrix
    estimation via refitted cross validation. Journal of Econometrics, 215, 118–130.
    Wolfson, J. (2011). EEBOOST: a general method for prediction and variables selection based
    on estimating equation. Journal of the American Statistical Association, 106, 295–305.
    Xue, L. and Zou, H. (2012). Regularized rank-based estimation of high-dimensional nonparanormal graphical models. The Annals of Statistics, 40, 2541–2571.
    Yang, Y., Dai, H., and Pan, J. (2023). Block-diagonal precision matrix regularization for
    ultra-high dimensional data. Computational Statistics and Data Analysis, 179, 107630.
    Yang, Z., Ning, Y., and Liu, H. (2018). On semiparametric exponential family graphical
    models. Journal of Machine Learning Research, 19, 1–59.
    Yi, G. Y. (2017). Statistical Analysis with Measurement Error and Misclassification: Strategy, Method and Application. Springer, New York.
    Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical
    model. Biometrika, 94, 19–35 .
    Zhao, T., Liu, H., Lafferty, J., and Wasserman, L. (2012). The huge package for highdimensional undirected graph estimation in R. Journal of Machine Learning Research,
    13, 1059–1062.
    Zou, H. (2006) The adaptive Lasso and its oracle properties. Journal of the American
    Statistical Association, 101, 1418–1429
    描述: 碩士
    國立政治大學
    統計學系
    111354028
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111354028
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    402801.pdf1172KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈