政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152779
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51275934      線上人數 : 902
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152779
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/152779


    題名: 台灣民眾各類文化活動參與之關聯分析
    Association Analysis for Participation in Various Cultural Activities in Taiwan.
    作者: 鄭雲昊
    Zheng, Yun-Hao
    貢獻者: 鄭宗記
    鄭雲昊
    Zheng, Yun-Hao
    關鍵詞: 文化雜食
    資料採掘
    市場區隔
    關聯規則分析
    對應分析
    多重對應分析
    多維標度
    日期: 2024
    上傳時間: 2024-08-05 14:00:04 (UTC+8)
    摘要: 過去的人們對於文化的接納及品味,認為高經濟地位或相對應關係之民眾其對於文化喜好具單一性,但在Peterson & Kern (1996) 研究中發現,大眾的文化習性隨著時間推進漸漸地越來越多元化,而現在有許多學者針對於不同文化具一定程度的接受度或積極性之情況為文化雜食傾向 (Cultural Omnivore)。
    本文將透過資料採掘中之關聯規則分析(Association Rules Mining)、常用於區隔不同消費者群體間相關性的統計方法對應分析(Correspondence Analysis)和多重對應分析(Multiple Correspondence Analysis)以及探討兩變數間距離的相關性分析方法多維標度(Multidimensional Scaling)等方法,來研究出台灣民眾的文化參與情形,並利用台灣民眾的社會經濟地位作為市場區隔標準,分析不同群體所偏好參與的文化活動。
    參考文獻: Abdi, H., & Valentin, D. (2007). Multiple correspondence analysis. Encyclopedia of
    Measurement and Statistics, 2(4), 651–657.
    Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets
    of items in large databases. In Proceedings of The 1993 ACM SIGMOD International
    Conference on Management of Data (pp. 207–216).
    Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In
    Proc. 20th Int. Conf. Very Large Data Bases, VLDB (Vol. 1215, pp. 487–499).
    Bonazzi, M., Cancellieri, G., & Casarin, F. (2024). Omnivorous cultural consumption
    and the co-creation of cultural products: Interactive versus participatory art. Journal of
    Consumer Culture, 24(1), 24–44.
    Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and
    implication rules for market basket data. In Proceedings of The 1997 ACM SIGMOD
    International Conference on Management of Data (pp. 255–264).
    Cheng, T.-C., & Huang, C.-H. (2024). Mining and modeling both association patterns
    and determinants for the attendance of performing arts activities. Measurement: Inter-
    disciplinary Research and Perspectives, 1–19.
    Graffelman, J., & De Leeuw, J. (2023). Improved approximation and visualization of the
    correlation matrix. The American Statistician, 77(4), 432–442.
    Greenacre, M. (2017). Correspondence analysis in practice. Chapman and Hall/CRC.
    Gunnarsson, C. L., Walker, M. M., Walatka, V., & Swann, K. (2007). Lessons learned: A
    case study using data mining in the newspaper industry. Journal of Database Marketing
    & Customer Strategy Management, 14, 271–280.
    Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan
    Kaufmann.
    Hedegard, D. (2013). Blackness and experience in omnivorous cultural consumption:
    Evidence from the tourism of capoeira in salvador, brazil. Poetics, 41(1), 1–26.
    Higgs, N. (1991). Practical and innovative uses of correspondence analysis. Journal of
    The Royal Statistical Society: Series D (The Statistician), 40(2), 183–194.
    Hills, M. (1969). On looking at large correlation matrices. Biometrika, 56(2), 249–253.
    Holt, D. B. (1998). Does cultural capital structure american consumption? Journal of
    Consumer Research, 25(1), 1–25.
    Kishino, H., Hanyu, K., Yamashita, H., & Hayashi, C. (1998). Correspondence analysis
    of paper recycling society: consumers and paper makers in japan. Resources, Conser-
    vation and Recycling, 23(4), 193–208.
    Kwon, Y. J., & Kwon, K.-N. (2013). Cultural omnivores’ consumption: strategic and
    inclusively exclusive. International Journal of Marketing Studies, 5(1), 118.
    Lin, R., Lin, C., & Wong, J. (1996). An application of multidimensional scaling in product
    semantics. International Journal of Industrial Ergonomics, 18(2-3), 193–204.
    Major, J. A., & Mangano, J. J. (1995). Selecting among rules induced from a hurricane
    database. Journal of Intelligent Information Systems, 4, 39–52.
    McCrae, R. R., & Greenberg, D. M. (2014). Openness to experience. The Wiley Handbook
    of Genius, 222–243.
    Moser, E. B. (1989). Exploring contingency tables with correspondence analysis. Bioin-
    formatics, 5(3), 183–189.
    Ollivier, M. (2008). Modes of openness to cultural diversity: Humanist, populist, practi-
    cal, and indifferent. Poetics, 36(2-3), 120–147.
    Peterson, R. A. (1992). Understanding audience segmentation: From elite and mass to
    omnivore and univore. Poetics, 21(4), 243–258.
    Peterson, R. A., & Kern, R. M. (1996). Changing highbrow taste: From snob to omnivore.
    American Sociological Review, 900–907.
    Rimmer, M. (2012). Beyond omnivores and univores: The promise of a concept of
    musical habitus. Cultural Sociology, 6(3), 299–318.
    Romão, J., Neuts, B., Nijkamp, P., & Van Leeuwen, E. (2015). Culture, product differenti-
    ation and market segmentation: A structural analysis of the motivation and satisfaction
    of tourists in amsterdam. Tourism Economics, 21(3), 455–474.
    Roose, H., Van Eijck, K., & Lievens, J. (2012). Culture of distinction or culture of
    openness? using a social space approach to analyze the social structuring of lifestyles.
    Poetics, 40(6), 491–513.
    Saeed, N., Nam, H., Al-Naffouri, T. Y., & Alouini, M.-S. (2019). A state-of-the-art sur-
    vey on multidimensional scaling-based localization techniques. IEEE Communications
    Surveys & Tutorials, 21(4), 3565–3583.
    Saeed, N., Nam, H., Haq, M. I. U., & Muhammad Saqib, D. B. (2018). A survey on
    multidimensional scaling. ACM Computing Surveys (CSUR), 51(3), 1–25.
    Sarkar, D., Bali, R., Sharma, T., Sarkar, D., Bali, R., & Sharma, T. (2018). Customer
    segmentation and effective cross selling. Practical Machine Learning with Python: A
    Problem-Solver’s Guide to Building Real-World Intelligent Systems, 373–405.
    Saunders, J. A. (1980). Cluster analysis for market segmentation. European Journal of
    Marketing, 14(7), 422–435.
    Streifer, P. A., & Schumann, J. A. (2005). Using data mining to identify actionable infor-
    mation: Breaking new ground in data-driven decision making. Journal of Education
    for Students Placed at Risk, 10(3), 281–293.
    Sullivan, O., & Katz-Gerro, T. (2007). The omnivore thesis revisited: Voracious cultural
    consumers. European Sociological Review, 23(2), 123–137.
    Tynan, A. C., & Drayton, J. (1987). Market segmentation. Journal of Marketing Man-
    agement, 2(3), 301–335.
    Ünvan, Y. A. (2021). Market basket analysis with association rules. Communications in
    Statistics-Theory and Methods, 50(7), 1615–1628.
    Warde, A., Wright, D., & Gayo-Cal, M. (2007). Understanding cultural omnivorousness:
    Or, the myth of the cultural omnivore. Cultural Sociology, 1(2), 143–164.
    Warde, A., Wright, D., & Gayo-Cal, M. (2008). The omnivorous orientation in the uk.
    Poetics, 36(2-3), 148–165.
    Zhou, N. (2020). Database design of regional music characteristic culture resources based
    on improved neural network in data mining. Personal and Ubiquitous Computing,
    24(1), 103–114.
    描述: 碩士
    國立政治大學
    統計學系
    111354022
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111354022
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    402201.pdf5809KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋