政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152775
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50817789      Online Users : 722
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152775


    Title: 機器學習方法於分類或預測問題之比較與應用
    Machine Learning Methods in Classification or Prediction: Some Comparison and Applications
    Authors: 古政弘
    Gu, Cheng-Hung
    Contributors: 張育瑋
    Chang, Yu-Wei
    古政弘
    Gu, Cheng-Hung
    Keywords: 分類迴歸樹
    貝氏可加性迴歸樹
    隨機森林
    Classification and Regression Tree
    Bayesian Additive Regression Trees
    Random Forest
    Date: 2024
    Issue Date: 2024-08-05 13:59:17 (UTC+8)
    Abstract: 近年新的機器學習方法相當蓬勃發展,根據其應變數為連續型或類別型,這
    些方法可以被應用於預測或分類問題中。本研究感興趣一些機器學習方法的預測或分類準確度為何,並且特別聚焦於可解釋性的機器學習,因為在實際資料分析中,應用者也常會感興趣自變數與應變數的關係之解釋。在此考慮七種機器學習方法或統計方法:分類迴歸樹(Classification and Regression Tree)、貝氏可加性迴歸樹(Bayesian additive regression trees)、隨機森林(random forest)、多變量適應性迴歸弧線(multivariate adaptive regression splines)、廣義相加模型(generalized additive model)、線性判別分析(linear discriminant analysis)及二次判別分析 (quadratic discriminant analysis),將這些方法分別應用至兩筆實際資料,對於資料的訓練集進行建模,比較各種方法在測試資料集之預測或分類效果。
    In recent years, a multitude of machine learning methods have been proposed.Depending on whether the response variable is continuous or ordinal categorical, these methods can be applied to prediction or classification problems. This study is interested in the predictive or classification accuracy of various machine learning methods, with a particular focus on interpretable machine learning. In practical data analysis, users often seek to understand the relationships between independent and dependent variables.We consider seven machine learning and statistical methods: Classification and Regression Tree, Bayesian Additive Regression Trees, Random Forest, Multivariate Adaptive Regression Splines, Generalized Additive Model, Linear Discriminant Analysis, and Quadratic Discriminant Analysis. We apply these methods to two real datasets. Subsequently, we compare the prediction and classification performance of the seven methods on the test sets.
    Reference: Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
    Chipman, H., George, E., & Mcculloch, R. (2010). BART:Bayesian Additive Regression Trees. Annals of Applied Statistics, 4, 266-98
    Hastie, T., & Tibshirani, R. (1987). Generalized Additive Models: Some Applications. Journal of the American Statistical Association, 82, 371–386.
    Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. Annals of Applied Statistics, 19, 1-67.
    Kim, C., & Park, S. (2022). Comparison of Tree-Based Ensemble Models for Regression. Communications for Statistical Applications and Methods, 29, 561-589.
    Knežević, marinela., Has, A., & Zekic´ -sušac, M. (2021). Predicting EnergyCost of Public Buildings by Artificial Neural Networks, CART, and Random Forest. Neurocomputing, 439, 223-233.
    Barros, F., Carvalho, G. C., Costa, Y., & Martins, I. (2022). Sea-Level RiseEffects on Macrozoobenthos Distribution within an Estuarine Gradient Using Species
    Distribution Modeling. Ecological Informatics, 71, 101816.
    Hong, H., Naghibi, S.A., Moradi Dashtpagerdi, M. et al. (2017). A comparative between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and
    weights-of-evidence models for forest fire susceptibility mapping in China. Arab J Geosci 10, 167.
    VE, S. & Cho, Y. (2020). Season wise bike sharing demand analysis using random forest algorithm. Computational Intelligence, 40.
    Du, J., Liu, J. S, & Krakovna, V. (2015). Selective Bayesian Forest Classifier Simultaneous Variable Selection and Classification. Arxiv.
    Martín, B., González–Arias, J., & Vicente–Vírseda, J. A. (2021). Machine learning as
    a successful approach for predicting complex spatio–temporal patterns in animal species abundance. Animal Biodiversity and Conservation, 44.2, 289-301.
    Gunnarsson, B. R., vanden Broucke, S., Baesens, B., Óskarsdóttir, M., & Lemahieu,W. (2021). Deep learning for credit scoring : do or don’t? EUROPEAN JOURNAL
    OF OPERATIONAL RESEARCH, 295, 292-305.
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. I. (1984). Classification and regression trees. Belmont, Calif.:Wadsworth.
    Chipman, H. A., George, E. I., & Mcculloch, R. E. (1998). Bayesian CART Model Search. Journal of the American Statistical Association, 93, 935- 948.
    Bleich, J., & Kapelner, A. (2014, November 24). BartMachine: Machine Learning with
    Bayesian Additive Regression Trees. Arxiv.
    Mcculloch, R., Spanbauer, C., & Sparapani, R. (2021). Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: TheBART R Package. Journal of Statistical Software, 97, 1–66.
    Urbanek, S. (2024, January 26). RJava: Low-Level R to Java Interface.
    Straw I, Wu H. Investigating for bias in healthcare algorithms: a sex-stratified
    analysis of supervised machine learning models in liver disease prediction. BMJ Health CareInform 2022;29:e100457.
    Prasad babu, M. S., Ramana, B. V., & Venkateswarlu, N. B. (2012). A Critical Comparative Study of Liver Patients from USA and INDIA: An Exploratory Analysis. International Journal of Computer Science Issues, 9, 101-114.
    Ramana, Bendi., & Venkateswarlu, N. (2012). ILPD (Indian Liver PatientDataset). UCI Machine Learning Repository.
    Quinlan, R. (1993). Auto MPG. UCI Machine Learning Repository.
    Description: 碩士
    國立政治大學
    統計學系
    111354005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354005
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    400501.pdf3135KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback