English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50828850      Online Users : 640
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152774
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152774


    Title: 以基於熵值模擬之演算法探討類別資料中的複雜關聯
    Investigating the Complex Associations in Categorical Data through an Entropy-Based Simulation Algorithm
    Authors: 高宏維
    Kao, Hong-Wei
    Contributors: 周珮婷
    謝復興

    高宏維
    Kao, Hong-Wei
    Keywords: Behavioral Risk Factor Surveillance System (BRFSS)
    條件熵

    統計模擬
    探索性資料分析
    類別資料分析
    熱度圖
    Behavioral Risk Factor Surveillance System (BRFSS)
    Conditional Entropy
    Entropy
    Statistical Simulation
    Exploratory Data Analysis
    Categorical Data Analysis
    Heatmap
    Date: 2024
    Issue Date: 2024-08-05 13:59:05 (UTC+8)
    Abstract: 本研究設計了一套基於熵值模擬的探索性類別資料分析方法,用於了解BRFSS 資料中,心臟病、中風(兩者共同組成反應變數)與風險因子之間存在的複雜關聯,並對其作易於解讀的視覺化呈現。該資料經過整理後,所有的變數皆為類別型態,並且具有資料不平衡以及異質性的特色,而本研究會針對整體健康度最差的樣本,探討以年齡組別分成的四組子樣本各自的風險特徵,藉以對其疾病機制做詳盡的了解。在提出的分析方法中會根據反應變數和風險因子的列聯表來獲取重要的資訊,透過虛無假設及對立假設下的兩種多項分配來生成資料與計算熵值,配合去關聯化的運作和可靠性檢查來決定各階層的主風險類別,並會以直方圖作關聯方向與交互作用之呈現。而透過階層分群的熱度圖可以觀察反應變數與主風險類別的關聯模式,主風險類別越高階的熱度圖,越能展示不同年齡組別的子樣本間,不同的疾病機制,且能從熱度圖中找到非典型的個體,其存在可用以說明機器學習模型在分類上錯誤的原因之一,此外熱度圖中的資料經過簡單的處理後,能夠為個體患病的可能性作具體的評估。
    This study proposes an exploratory categorical data analysis method based on entropy simulation to understand the complex relationships among heart disease, stroke (both forming the composite response variable), and risk factors in BRFSS data, and to visually present them for easy interpretation. After data preprocessing, all variables are categorical and exhibit characteristics of data imbalance and heterogeneity. This study focuses on the sample with the poorest general health and investigates the risk characteristics of four sub-samples divided by age groups to gain a comprehensive understanding of their disease mechanisms. The proposed analysis method extracts important information from contingency tables of the response variable and risk factors, generates data and calculates entropy through two types of multinomial distributions under null and alternative hypotheses. This process, combined with de-association and reliability checks, determines the major-risk-categories of varying orders. The directional associations and interactions between risk factors are presented through histograms. Through hierarchical clustering heatmaps, the association patterns between the response variable and major-risk-categories can be observed. Heatmaps of higher-order major-risk-categories better demonstrate the different disease mechanisms among sub-samples of different age groups. Atypical subjects, which can explain one of the reasons for classification errors in machine learning models, can be identified from the heatmaps. Furthermore, after simple processing, the data in the heatmaps can provide a specific assessment of the likelihood of individual illness.
    Reference: Benzécri, J. P., & Bellier, L. (1973). L'analyse des données: Benzécri, J.-P. et al. L'analyse des correspondances. Dunod. https://books.google.fr/books?id=sDTwAAAAMAAJ
    Centers for Disease Control and Prevention. (2014). About BRFSS. Centers for Disease Control and Prevention. Retrieved April 29 from https://www.cdc.gov/brfss/about/index.htm
    Cramer, H. (1946). Mathematical methods of statistics, Princeton, 1946. Math Rev (Math‐SciNet) MR16588 Zentralblatt MATH, 63, 300.
    Fushing, H., Chou, E. P., & Chen, T.-L. (2023). Multiscale major factor selections for complex system data with structural dependency and heterogeneity. Physica A: Statistical Mechanics and its Applications, 630, 129227.
    Fushing, H., Kao, H.-W., & Chou, E. P. (2024). Topological Risk-Landscape in Metric-Free Categorical Database. IEEE Access.
    Hirschfeld, H. O. (1935). A connection between correlation and contingency. Mathematical Proceedings of the Cambridge Philosophical Society,
    Lucas-Kao. (2024). Histograms-of-simulation. Github. Retrieved April 29 from https://github.com/Lucas-Kao/Histograms-of-simulation
    Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44(247), 335-341.
    Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175.
    Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation. Drapers’ Co. Memoirs.
    Press, W. H. (2007). Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press.
    Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
    Teboul, A. (2022). Heart Disease Health Indicators Dataset. Kaggle. Retrieved October 2 from https://www.kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset/data
    Theil, H. (1972). Statistical decomposition analysis: With applications in the social and administrative sciences. North-Holland Pub. Co.
    Wilkinson, L., & Friendly, M. (2009). The history of the cluster heat map. The American Statistician, 63(2), 179-184.
    Description: 碩士
    國立政治大學
    統計學系
    111354002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354002
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400201.pdf7671KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback