English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114401/145431 (79%)
Visitors : 53143044      Online Users : 539
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152772
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152772


    Title: 兩組資料集間之相關性研究
    The study about correlations between two data sets
    Authors: 紀穎澤
    Che, Kee Ying
    Contributors: 鄭宗記
    紀穎澤
    Kee Ying Che
    Keywords: Mantel 檢定
    距離共變異數檢定
    RV係數
    PROTEST
    典型相關係數分析
    歐氏離氏
    馬氏距離
    曼哈頓距離
    明氏距離
    Mantel test
    distance covariance test
    RV coefficient
    PROTEST
    canonical correlation coefficient analysis
    Euclidean distance
    Mahalanobis distance
    Manhattan distance
    Minkowski distance
    Date: 2024
    Issue Date: 2024-08-05 13:58:42 (UTC+8)
    Abstract: 評估兩組資料集相關性是需要去探討的。其中去觀察兩組資料集相關性的統計方法除了Mantel 檢定,距離共變異數檢定,PROTEST,RV係數,典型相關係數分析等方法,去比較這幾種方法下在不同的資料形態下的好。Mantel檢定與距離共變異數檢定都是通過距離去觀察資料集的相關性,本論文除了使用歐式距離外,也有使用馬氏距離,曼哈頓距離以及明氏距離,並去比較不同距離方法對檢定結果有何影響。我們通過電腦模擬一般多元常態分配以及多變量t分配資料,針對每個模型分配去變更資料變數的變異數,資料的樣本數,資料的維度等,並根據檢定力(power)與檢定力圖來比較每個檢定的結果,最後利用實證資料觀察各檢定的檢定結果。
    Across various statistical studies, assessing the correlation between two sets of data is an issue that needs to be discussed in most topics. There are countless statistical methods for observing correlations between two sets of data. The methods used include Mantel test, distance covariance test, PROTEST, RV coefficient, canonical correlation coefficient analysis, then we compare the performance and pros & cons of different data forms under these methods. The Mantel test and the distance covariance test both use distance to observe the correlation of data sets. In addition to using Euclidean distance, this article also uses Mahalanobis distance, Manhattan distance and Minkowski distance to compare the test results of different distance methods. What impact does it have. Then we use computer simulations to simulate general multivariate normal distribution and multivariate t-distribution data, changing the variation of data variables of each model distribution, the number of data samples, the dimensions of the data, etc., and based on the test power and test power diagram to compare the results of each test.
    Reference: Abdi, H. (2011). Congruence: Congruence coefficient, RV-coefficient, and Mantel coefficient. pp. 1-15.
    Arslan, O. (2004). Family of multivariate generalized t distributions. Journal of Multivariate Analysis, 89(2), pp. 329-337.
    Canty, A.J., & Ripley, B.D. (2022). Bootstrap Functions. R package version 1.3-28.1., pp.1-117.
    Davison, A.C., & Kuonen, D. (2002). An introduction to the bootstrap with applications in R. Statistical Computing and Graphics Newsletter, 13(1), pp. 6-11.
    Diniz-FilhoI, J.A.F., Soares, T.N., & Lima, J.S. (2013). Mantel test in population genetics. Genetics and molecular biology, 36(4), pp. 475-485.
    Dutilleul, P., Stockwell, J.D., Frigon, D., & Legendre, P. ( 2000). The Mantel test versus Pearson's correlation analysis: Assessment of the differences for biological and environmental studies, pp. 131-150.
    Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, pp. 751-760.
    Flury, B.K., & Riedwyl, H. (1986). Standard distance in univariate and multivariate analysis. The American Statistician. pp. 249-251.
    Ghorbani, H.R. (2019). Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis Series Mathematics and Informatics, 34(3), pp. 583-595.
    González, I., Déjean, S., Martin, P. G. P., & Baccini, A. (2008). CCA: An R package to extend canonical correlation analysis. Journal of Statistical Software, 23(12), pp. 1-14.
    Hotelling, H. (1935). Demand functions with limited budgets. Journal of Educational Psychology, 26, pp. 139-142.
    Husson, F., Josse J. (2007). FactoMineR: Multivariate Analysis with the FactoMineR package
    Jackson, D.A. (1995). PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience, 2(3), pp. 297-303.
    Kibria, B.M.G., & Joarder A.H. (2006). A short review of multivariate t-distribution. Journal of Statistical research, 40(1), pp. 59-72.
    Leduc, G. (1992). A framework based on implementation relations for implementing LOTOS specifications.
    Legendre, P. (2000). Comparison of permutation methods for the partial correlation and partial Mantel tests, Journal of statistical computation and simulation, pp. 37-73.
    Legendre, P. & Fortin, M.J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular ecology resources, 10(5), pp. 831-844.
    Mahalanobis, P.C. (1936). A note on the statistical and biometric writings of Karl Pearson. The Indian Journal of Statistics, 2(4), pp. 411-422.
    Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer research, 27(2), pp. 209-220.
    Peres-Neto, P.R. & Jackson, D.A., (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129(2), pp. 169-178.
    Robert ,P., & Escoufier , Y. (1976). A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient. Journal of the Royal Statistical Society Series C: Applied Statistics, 25(3), pp. 257-265.
    Silva, A., Dias, C.T., Cecon, P., & Rego, E. (2015). An alternative procedure for performing a power analysis of Mantel’s test. Journal of Applied Statistics, 42(9), pp. 1984-1992.
    Sto ̈ckl, S., & Hanke, M. (2014). Financial Applications of the Mahalanobis Distance. Applied Economics and Finance, 1(2), pp. 78-84.
    Székely, G.J., Rizzo, M.L. & Bakirov, N.K. (2007). Measuring and testing dependence by correlation of distances. The annals of statistics, 35, pp. 2769-2794.
    Description: 碩士
    國立政治大學
    統計學系
    110354031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110354031
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    403101.pdf13303KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback