Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/152772
|
Title: | 兩組資料集間之相關性研究 The study about correlations between two data sets |
Authors: | 紀穎澤 Che, Kee Ying |
Contributors: | 鄭宗記 紀穎澤 Kee Ying Che |
Keywords: | Mantel 檢定 距離共變異數檢定 RV係數 PROTEST 典型相關係數分析 歐氏離氏 馬氏距離 曼哈頓距離 明氏距離 Mantel test distance covariance test RV coefficient PROTEST canonical correlation coefficient analysis Euclidean distance Mahalanobis distance Manhattan distance Minkowski distance |
Date: | 2024 |
Issue Date: | 2024-08-05 13:58:42 (UTC+8) |
Abstract: | 評估兩組資料集相關性是需要去探討的。其中去觀察兩組資料集相關性的統計方法除了Mantel 檢定,距離共變異數檢定,PROTEST,RV係數,典型相關係數分析等方法,去比較這幾種方法下在不同的資料形態下的好。Mantel檢定與距離共變異數檢定都是通過距離去觀察資料集的相關性,本論文除了使用歐式距離外,也有使用馬氏距離,曼哈頓距離以及明氏距離,並去比較不同距離方法對檢定結果有何影響。我們通過電腦模擬一般多元常態分配以及多變量t分配資料,針對每個模型分配去變更資料變數的變異數,資料的樣本數,資料的維度等,並根據檢定力(power)與檢定力圖來比較每個檢定的結果,最後利用實證資料觀察各檢定的檢定結果。 Across various statistical studies, assessing the correlation between two sets of data is an issue that needs to be discussed in most topics. There are countless statistical methods for observing correlations between two sets of data. The methods used include Mantel test, distance covariance test, PROTEST, RV coefficient, canonical correlation coefficient analysis, then we compare the performance and pros & cons of different data forms under these methods. The Mantel test and the distance covariance test both use distance to observe the correlation of data sets. In addition to using Euclidean distance, this article also uses Mahalanobis distance, Manhattan distance and Minkowski distance to compare the test results of different distance methods. What impact does it have. Then we use computer simulations to simulate general multivariate normal distribution and multivariate t-distribution data, changing the variation of data variables of each model distribution, the number of data samples, the dimensions of the data, etc., and based on the test power and test power diagram to compare the results of each test. |
Reference: | Abdi, H. (2011). Congruence: Congruence coefficient, RV-coefficient, and Mantel coefficient. pp. 1-15. Arslan, O. (2004). Family of multivariate generalized t distributions. Journal of Multivariate Analysis, 89(2), pp. 329-337. Canty, A.J., & Ripley, B.D. (2022). Bootstrap Functions. R package version 1.3-28.1., pp.1-117. Davison, A.C., & Kuonen, D. (2002). An introduction to the bootstrap with applications in R. Statistical Computing and Graphics Newsletter, 13(1), pp. 6-11. Diniz-FilhoI, J.A.F., Soares, T.N., & Lima, J.S. (2013). Mantel test in population genetics. Genetics and molecular biology, 36(4), pp. 475-485. Dutilleul, P., Stockwell, J.D., Frigon, D., & Legendre, P. ( 2000). The Mantel test versus Pearson's correlation analysis: Assessment of the differences for biological and environmental studies, pp. 131-150. Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, pp. 751-760. Flury, B.K., & Riedwyl, H. (1986). Standard distance in univariate and multivariate analysis. The American Statistician. pp. 249-251. Ghorbani, H.R. (2019). Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis Series Mathematics and Informatics, 34(3), pp. 583-595. González, I., Déjean, S., Martin, P. G. P., & Baccini, A. (2008). CCA: An R package to extend canonical correlation analysis. Journal of Statistical Software, 23(12), pp. 1-14. Hotelling, H. (1935). Demand functions with limited budgets. Journal of Educational Psychology, 26, pp. 139-142. Husson, F., Josse J. (2007). FactoMineR: Multivariate Analysis with the FactoMineR package Jackson, D.A. (1995). PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience, 2(3), pp. 297-303. Kibria, B.M.G., & Joarder A.H. (2006). A short review of multivariate t-distribution. Journal of Statistical research, 40(1), pp. 59-72. Leduc, G. (1992). A framework based on implementation relations for implementing LOTOS specifications. Legendre, P. (2000). Comparison of permutation methods for the partial correlation and partial Mantel tests, Journal of statistical computation and simulation, pp. 37-73. Legendre, P. & Fortin, M.J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular ecology resources, 10(5), pp. 831-844. Mahalanobis, P.C. (1936). A note on the statistical and biometric writings of Karl Pearson. The Indian Journal of Statistics, 2(4), pp. 411-422. Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer research, 27(2), pp. 209-220. Peres-Neto, P.R. & Jackson, D.A., (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129(2), pp. 169-178. Robert ,P., & Escoufier , Y. (1976). A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient. Journal of the Royal Statistical Society Series C: Applied Statistics, 25(3), pp. 257-265. Silva, A., Dias, C.T., Cecon, P., & Rego, E. (2015). An alternative procedure for performing a power analysis of Mantel’s test. Journal of Applied Statistics, 42(9), pp. 1984-1992. Sto ̈ckl, S., & Hanke, M. (2014). Financial Applications of the Mahalanobis Distance. Applied Economics and Finance, 1(2), pp. 78-84. Székely, G.J., Rizzo, M.L. & Bakirov, N.K. (2007). Measuring and testing dependence by correlation of distances. The annals of statistics, 35, pp. 2769-2794. |
Description: | 碩士 國立政治大學 統計學系 110354031 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110354031 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
403101.pdf | | 13303Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|