English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52167261      Online Users : 518
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152766


    Title: 輕量化中介半量子安全直接通訊協定
    Lightweight Mediated Semi-quantum Secure Direct Communication Protocol
    Authors: 曾基臺
    Tseng, Chi-Tai
    Contributors: 左瑞麟
    Tso, Ray-lin
    曾基臺
    Tseng, Chi-Tai
    Keywords: 量子安全直接通訊
    量子圖態
    一次性分發
    不受信任的第三方
    Quantum Secure Direct Communication
    Graph State
    One-way Distribution
    Untrusted Third-party
    Date: 2024
    Issue Date: 2024-08-05 13:55:36 (UTC+8)
    Abstract: Rong 等人於 2021 年 Quantum Information Processing 發表了一 篇 Mediated Semi-Quantum Secure Direct Communication,此篇協定提 出了兩方皆為傳統使用者的中介半量子安全直接通訊協定,透過第三 方量子使用者的協助,優化 Quantum Secure Direct Communication 兩 方皆為量子使用者的設計,並且也優化 Semi-quantum Secure Direct Communication,一方為量子使用者另一方為傳統使用者的設計,在研 究此篇協定時,發現傳統使用者須具備產生量子位元的能力以及透過 量子通道回傳產出的量子給第三方量子使用者,與想像中的傳統使用 者來的高出許多能力,於是進行了此篇協定的研究。在本次研究中, 本研究提出了 Lightweight Mediated Semi-Quantum Secure Direct Communication (LMSQSDC) 的協定,利用圖態所擁有的特性,設計出 第三方使用者僅需進行一次性的分發及量測,改善 MSQSDC 安全性 問題,並且降低傳統使用者所需具備的能力,並且進行量子效能分析, 透過本研究所提出的協定,可以大幅提升 MSQSDC 的量子效率。
    Rong et al. published a paper titled "Mediated Semi-Quantum Secure Direct Communication" in Quantum Information Processing in 2021. This protocol proposes a mediated semi-quantum secure direct communication scheme where both parties are classical users, optimized with the assistance of a third-party quantum user, enhancing the design of Quantum Secure Direct Communication (QSDC) for two quantum users and also optimizing Semi-quantum Secure Direct Communication (SQSDC) for one quantum user and one classical user. During the research for this protocol, it was found that classical users need to possess the ability to generate quantum bits and transmit the produced quantum bits back to the third-party quantum user via a quantum channel, requiring much more capability than initially anticipated for classical users. Consequently, the study of this protocol was initiated.
    This research proposes the Lightweight Mediated Semi-Quantum Secure Direct Communication (LMSQSDC) protocol. By leveraging the properties inherent in graph states and designing a scheme where the third- party user only needs to perform one-way distribution and measurement, this protocol addresses security issues in MSQSDC and reduces the capabilities required for classical users. Additionally, quantum efficiency analysis is conducted. The protocol proposed in this study significantly enhances the quantum efficiency of MSQSDC.
    Reference: [1] "Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984)."
    [2] H.-K. Lo and H. F. Chau, "Unconditional Security of Quantum Key Distribution Over Arbitrarily Long Distances," Science (American Association for the Advancement of Science), vol. 283, no. 5410, pp. 2050-2056, 1999, doi: 10.1126/science.283.5410.2050.
    [3] P. W. Shor and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Physical review letters, vol. 85, no. 2, pp. 441-444, 2000, doi: 10.1103/PhysRevLett.85.441.
    [4] D. Mayers, "Unconditional security in quantum cryptography," Journal of the ACM, vol. 48, no. 3, pp. 351-406, 2001, doi: 10.1145/382780.382781.
    [5] E. Biham, M. Boyer, P. O. Boykin, T. Mor, and V. Roychowdhury, "A proof of
    the security of quantum key distribution," Journal of cryptology, vol. 19, no. 4,
    pp. 381-439, 2006, doi: 10.1007/s00145-005-0011-3.
    [6] G. Long and X. Liu, "Theoretically efficient high-capacity quantum-key-
    distribution scheme," Phys. Rev. A, vol. 65, 2002// 2002, doi:
    10.1103/PhysRevA.65.032302.
    [7] F. Deng, G. Long, and X. Liu, "Two-step quantum direct communication
    protocol using the Einstein–Podolsky–Rosen pair block," Phys. Rev. A, vol.
    68, 2003// 2003, doi: 10.1103/PhysRevA.68.042317.
    [8] F. Deng and G. Long, "Secure direct communication with a quantum one-time
    pad," Phys. Rev. A, vol. 69, 2004// 2004, doi: 10.1103/PhysRevA.69.052319.
    [9] X. Jin, X. Ji, and Y. Zhang, "Three-party quantum secure direct communication based on GHZ states," Phys. Lett. A, vol. 354, 2006// 2006, doi: 10.1016/j.physleta.2006.01.035.
    [10] M. Wang and F. Yan, "Three-party simultaneous quantum secure direct communication scheme with EPR pairs," Chin. Phys. Lett., vol. 24, 2007// 2007, doi: 10.1088/0256-307X/24/9/007.
    [11] Y. Xia and Z. Man, "Controlled quantum N-party simultaneous direct communication," Commun. Theor. Phys., vol. 48, 2007// 2007, doi: 10.1088/0253-6102/48/1/017.
    [12] S. Chong and T. Hwang, "The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs," Opt. Commun., vol. 284, 2011// 2011, doi: 10.1016/j.optcom.2010.08.037.
    [13] Y. He and W. Ma, "Three-party quantum secure direct communication against collective noise," Quantum Inf. Process., vol. 16, 2017// 2017, doi: 10.1007/s11128-017-1703-y.
    [14] S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, "Three-step three-party quantum secure direct communication," Sci. China Phys. Mech. Astron., vol. 61, 2018// 2018, doi: 10.1007/s11433-018-9224-5.
    [15] M. Boyer, R. Gelles, and D. Kenigsberg, "Semiquantum key distribution," Phys. Rev. A, vol. 79, 2009// 2009, doi: 10.1103/PhysRevA.79.032341.
    [16] W. e. i. Zhang, D. a. o. w. e. n. Qiu, and P. a. u. l. o. Mateus, "Security of a single-state semi-quantum key distribution protocol," Quantum Inf. Process., vol. 17, 2018// 2018, doi: 10.1007/s11128-018-1904-z.
    [17] X. Zou and D. Qiu, "Three-step semiquantum secure direct communication
    protocol," Sci. China Phys. Mech. Astron., vol. 57, 2014// 2014, doi:
    10.1007/s11433-014-5542-x.
    [18] C. Xie, L. Li, and H. Situ, "Semi-quantum secure direct communication scheme based on bell states," Int. J. Theor. Phys., vol. 57, 2018// 2018, doi: 10.1007/s10773-018-3713-7.
    [19] C. Yang and C. Tsai, "Advanced semi-quantum secure direct communication protocol based on bell states against flip attack," Quantum Inf. Process., vol. 19, 2020// 2020, doi: 10.1007/s11128-020-02623-7.
    [20] M. Zhang, H. Li, and Z. Xia, "Semiquantum secure direct communication using EPR pairs," Quantum Inf. Process., vol. 16, 2017// 2017, doi: 10.1007/s11128-017-1573-3.
    [21] W. Krawec, "Mediated semiquantum key distribution," Phys. Rev. A, vol. 91, 2015// 2015, doi: 10.1103/PhysRevA.91.032323.
    [22] Z. Rong, D. Qiu, P. Mateus, and X. Zou, "Mediated semi-quantum secure direct communication," Quantum information processing, vol. 20, no. 2, 2021, doi: 10.1007/s11128-020-02965-2.
    [23] M. Hein, J. Eisert, and H. J. Briegel, "Multiparty entanglement in graph states," Physical review. A, Atomic, molecular, and optical physics, vol. 69, no. 6, pp. 1-62311, 2004, doi: 10.1103/PhysRevA.69.062311.
    [24] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cambridge University Press: Cambridge, 2000.
    [25] N. Ananth and M. Senthilvelan, "Identifying non-k-separability of a class of N-qubit complete graph states using correlation tensors," The European physical journal. D, Atomic, molecular, and optical physics, vol. 70, no. 7, 2016, doi: 10.1140/epjd/e2016-70056-2.
    [26] D. Pan et al., "The Evolution of Quantum Secure Direct Communication: On
    the Road to the Qinternet," IEEE Communications Surveys & Tutorials, pp. 1-
    1, 2024, doi: 10.1109/COMST.2024.3367535.
    [27] A. Farouk, M. Zakaria, A. Megahed, and F. A. Omara, "A generalized architecture of quantum secure direct communication for N disjointed users with authentication," Sci. Rep., vol. 5, 2015// 2015, doi: 10.1038/srep16080.
    [28] C. h. e. n. Xie, L. v. z. h. o. u. Li, H. a. o. z. h. e. n. Situ, and J. i. a. n. h. a. o. He, "Semi-quantum secure direct communication scheme based on Bell states," Int. J. Theor. Phys., vol. 57, 2018// 2018, doi: 10.1007/s10773-018- 3713-7.
    [29] Z. Rong, D. Qiu, and X. Zou, "Semi-quantum secure direct communication with entanglement," Int. J. Theor. Phys., vol. 59, 2020// 2020, doi: 10.1007/s10773-020-04447-8.
    [30] M. Boyer, D. Kenigsberg, and T. Mor, "Quantum key distribution with classical bob," Phys. Rev. Lett., vol. 99, 2007// 2007, doi: 10.1103/PhysRevLett.99.140501.
    [31] M. Z. A. Bhuiyan and J. Wu, "Collusion Attack Detection in Networked Systems," in 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), 8-12 Aug. 2016 2016, pp. 286-293, doi: 10.1109/DASC-PICom-DataCom- CyberSciTec.2016.67.
    [32] Q. Y. Cai, "Eavesdropping on the two-way quantum communication protocols with invisible photons," Phys. Lett. A, vol. 351, 2006// 2006, doi: 10.1016/j.physleta.2005.10.050.
    [33] F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, "Improving the security of
    multiparty quantum secret sharing against Trojan horse attack," Physical
    review. A, Atomic, molecular, and optical physics, vol. 72, no. 4, 2005, doi: 10.1103/PhysRevA.72.044302.
    [34] A. Cabello, "Quantum key distribution in the Holevo limit," Phys. Rev. Lett.,
    vol. 85, 2000// 2000, doi: 10.1103/PhysRevLett.85.5635.
    [35] C. W. Yang and T. Hwang, "Efficient key construction on semi-quantum secret
    sharing protocols," Int. J. Quantum Info., vol. 11, 2013// 2013, doi: 10.1142/S0219749913500524.
    [36] C. W. Yang and T. Hwang, "Trojan horse attack free fault-tolerant quantum
    key distribution protocols," Quantum Inf. Process., vol. 13, 2014// 2014, doi: 10.1007/s11128-013-0689-3.
    [37] Y. F. Yang, L. Z. Duan, T. R. Qiu, X. M. Xie, and W. Y. Duan, "Multi-party
    semi-quantum secure direct communication using Greenberger–Horne– Zeilinger states," Quant. Inform. Process., vol. 21, 2022// 2022, doi: 10.1007/s11128-022-03671-x.
    [38] L.-C. Xu, H.-Y. Chen, N.-R. Zhou, and L.-H. Gong, "Multi-party semi- quantum secure direct communication protocol with cluster states," International journal of theoretical physics, vol. 59, no. 7, pp. 2175-2186, 2020, doi: 10.1007/s10773-020-04491-4.
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    109971027
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109971027
    Data Type: thesis
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    102701.pdf1991KbAdobe PDF1View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback