English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51583141      Online Users : 1002
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/152729
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152729


    Title: 比特幣日內技術分析交易策略:以交易區間突破為例
    Intraday Technical Analysis Trading Strategies in Bitcoin: A Focus on Trading Range Breakouts
    Authors: 陳冠華
    Chen, Guan-Hua
    Contributors: 岳夢蘭
    Yueh, Meng-Lan
    陳冠華
    Chen, Guan-Hua
    Keywords: 比特幣
    加密貨幣
    日內交易
    高頻交易
    技術分析
    交易區間突破
    Bitcoin
    Cryptocurrency
    Intraday trading
    High-frequency trading
    Technical analysis
    Trading range breakouts
    Date: 2024
    Issue Date: 2024-08-05 13:43:50 (UTC+8)
    Abstract: 近年來,加密貨幣市場引起了許多投資者的關注,許多學者也投入研究其中。然而,目前只有少數文章探討了日內技術分析策略在比特幣市場的預測能力與獲利能力。本文使用1分鐘高頻資料,對比特幣的日內交易區間突破策略進行了全面研究。我發現,當出現向上突破與向下突破訊號時,通常會產生顯著的正報酬。此外,研究顯示,當持有期間小於支撐阻力窗口長度的一半時,報酬率更傾向顯著異於無條件均值。自2017年以來,比特幣的日內交易區間突破策略的預測能力下降。我還檢驗了不同資料頻率的影響,發現隨著資料頻率降低,策略組合的報酬率顯著性也隨之降低,這表明比特幣市場的效率性隨著時間和資料頻率的降低而提高。最後,考慮到交易成本後,發現交易區間突破策略在比特幣日內市場中無法超越買進持有策略。
    In recent years, the cryptocurrency market has attracted much attention from investors and scholars. However, only a handful of studies have looked at the predictive power and profitability of intraday technical analysis strategies in the Bitcoin market. This study examines intraday trading range breakout strategies using 1-minute high-frequency data. The results show that significant positive returns often occur after breakout signals. Shorter holding periods, less than half the support-resistance window, tend to produce returns that are different from the unconditional mean return. Since 2017, the strategy’s effectiveness has decreased. As data frequency decreases, the returns from trading range breakout strategy become insignificant. Finally, after accounting for transaction costs, the trading range breakout strategies do not outperform the buy-and-hold strategy.
    Reference: Al-Yahyaee, K. H., Mensi, W., & Yoon, S. M. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228-234.
    Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1-4.
    Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets?. Journal of International Financial Markets, Institutions and Money, 54, 177-189.
    Bessembinder, H., & Chan, K. (1998). Market efficiency and the returns to technical analysis. Financial management, 5-17.
    Blau, B. M. (2017). Price dynamics and speculative trading in bitcoin. Research in international Business and Finance, 41, 493-499.
    Bouri, E., Gupta, R., Tiwari, A. K., & Roubaud, D. (2017). Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Finance Research Letters, 23, 87-95.
    Bouri, E., Lau, C. K. M., Lucey, B., & Roubaud, D. (2019). Trading volume and the predictability of return and volatility in the cryptocurrency market. Finance Research Letters, 29, 340-346.
    Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?. Finance Research Letters, 20, 192-198.
    Brandvold, M., Molnár, P., Vagstad, K., & Valstad, O. C. A. (2015). Price discovery on Bitcoin exchanges. Journal of International Financial Markets, Institutions and Money, 36, 18-35.
    Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of finance, 47(5), 1731-1764.
    Cheah, E. T., & Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics letters, 130, 32-36.
    Corbet, S., Eraslan, V., Lucey, B., & Sensoy, A. (2019). The effectiveness of technical trading rules in cryptocurrency markets. Finance Research Letters, 31, 32-37.
    Corbet, S., Lucey, B., & Yarovaya, L. (2018). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81-88.
    Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics letters, 165, 28-34.
    Detzel, A., Liu, H., Strauss, J., Zhou, G., & Zhu, Y. (2021). Learning and predictability via technical analysis: evidence from Bitcoin and stocks with hard‐to‐value fundamentals. Financial Management, 50(1), 107-137.
    Dwyer, G. P. (2015). The economics of Bitcoin and similar private digital currencies. Journal of financial stability, 17, 81-91.
    Dyhrberg, A. H. (2016). Hedging capabilities of bitcoin. Is it the virtual gold?. Finance Research Letters, 16, 139-144.
    Eross, A., McGroarty, F., Urquhart, A., & Wolfe, S. (2019). The intraday dynamics of bitcoin. Research in international business and finance, 49, 71-81.
    Glantz, M., & Kissell, R. (2013). Multi-asset risk modeling: techniques for a global economy in an electronic and algorithmic trading era. Academic Press.
    Grobys, K., Ahmed, S., & Sapkota, N. (2020). Technical trading rules in the cryptocurrency market. Finance Research Letters, 32, 101396.
    Hsu, P. H., Taylor, M. P., & Wang, Z. (2016). Technical trading: Is it still beating the foreign exchange market?. Journal of International Economics, 102, 188-208.
    Hu, B., McInish, T., Miller, J., & Zeng, L. (2019). Intraday price behavior of cryptocurrencies. Finance Research Letters, 28, 337-342.
    Hudson, R., & Urquhart, A. (2021). Technical trading and cryptocurrencies. Annals of Operations Research, 297(1), 191-220.
    Jiang, Y., Nie, H., & Ruan, W. (2018). Time-varying long-term memory in Bitcoin market. Finance Research Letters, 25, 280-284.
    Khairuddin, I. E., Sas, C., Clinch, S., & Davies, N. (2016, May). Exploring motivations for bitcoin technology usage. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 2872-2878).
    Khuntia, S., & Pattanayak, J. K. (2018). Adaptive market hypothesis and evolving predictability of bitcoin. Economics Letters, 167, 26-28.
    Kristoufek, L. (2018). On Bitcoin markets (in) efficiency and its evolution. Physica A: statistical mechanics and its applications, 503, 257-262.
    Marshall, B. R., Cahan, R. H., & Cahan, J. M. (2008). Does intraday technical analysis in the US equity market have value?. Journal of Empirical Finance, 15(2), 199-210.
    Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
    Olson, D. (2004). Have trading rule profits in the currency markets declined over time?. Journal of banking & Finance, 28(1), 85-105.
    Sensoy, A. (2019). The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters, 28, 68-73.
    Su, F., Wang, X., & Yuan, Y. (2022). The intraday dynamics and intraday price discovery of bitcoin. Research in International Business and Finance, 60, 101625.
    Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.
    Urquhart, A. (2017). Price clustering in Bitcoin. Economics letters, 159, 145-148.
    Urquhart, A., & Zhang, H. (2019). Is Bitcoin a hedge or safe haven for currencies? An intraday analysis. International Review of Financial Analysis, 63, 49-57.
    Wyckoff, R. D. (1910). Studies in tape reading. Traders Press.
    Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31-43). Academic Press.
    Zargar, F. N., & Kumar, D. (2019). Informational inefficiency of Bitcoin: A study based on high-frequency data. Research in International Business and Finance, 47, 344-353.
    Zhang, W., Wang, P., Li, X., & Shen, D. (2018). The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average. Physica A: Statistical Mechanics and its Applications, 510, 658-670.
    Description: 碩士
    國立政治大學
    財務管理學系
    111357028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111357028
    Data Type: thesis
    Appears in Collections:[財務管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    702801.pdf591KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback