English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52044937      Online Users : 673
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152702


    Title: 應用SOFAR導入弱因子模型分析台灣股價報酬與總體經濟波動關係
    Applying SOFAR in Weak Factor Model by Analyzing Relation between Taiwan Stock Returns and Macroeconomic Volatility
    Authors: 黃仕鴻
    Huang, Shih-Hung
    Contributors: 徐士勛
    Hsu, Shih-Hsun
    黃仕鴻
    Huang, Shih-Hung
    Keywords: 稀疏因子模型
    總體潛在因子
    產業類股報酬
    股價報酬
    波動性
    Sparse Factor Model
    Macroeconomic Latent Factors
    Industry Sector Returns
    Stock Price Returns
    Volatility
    Date: 2024
    Issue Date: 2024-08-05 13:37:07 (UTC+8)
    Abstract: 本研究採用2016年至2023年的資料,探討總體變數潛在因子與27項台股產業股價指數報酬之間的關係。我們首先利用稀疏因子模型將大量的總體變數進行資料降維,找尋出3個總體潛在因子後,將因子作為解釋變數,觀察因子對於產業股價指數的月報酬是否有顯著影響,接著再從能解釋的類股中找出個股,觀察因子對於其的影響力。首先,因子1對於水泥類股指數月報酬具解釋力;而因子2對電腦及週邊設備業類、通信網路業、資訊服務業類、建材營造類以及航運業類有解釋力;最後,因子3則對生技醫療類指數月報酬具解釋力。
    而在個股研究部分,我們發現因子1對於水泥業的台泥(1101)與信大(1109)有解釋力;而因子2則對於電腦及週邊設備業的伺服器族群、電信服務業的無線通訊設備個股、資訊服務業、建材營造業中的營造商個股以及航運業中的海運業族群有顯著解釋力;最後,因子3對於我們選取的生技醫療個股中,僅對中化(1701)、中化生 (1762)、美時(1795)以及國光生(4142)具解釋力。
    最後,透過本文的研究結果,我們能找出在台股中,報酬率較容易受到景氣波動或是總體變數改變所影響的產業與個股,並為台股投資者在建構投資組合時提供更多訊息,當國內景氣發生變化時,投資人能透過本研究來選擇合適的產業與個股進行資產配置。
    This study uses data from 2016 to 2023 to examine the relationship between macroeconomic latent factors and the returns of 27 Taiwanese stock market sector indices. We employ a sparse factor model to reduce the dimensionality of numerous macroeconomic variables, identifying three macroeconomic latent factors. These factors are then used to determine their impact on the monthly returns of sector indices. Subsequently, we identify individual stocks within the explainable sectors to observe the factors' influence on them.
    Factor 1 explains the monthly returns of the cement sector index. Factor 2 explains the returns for the computer and peripheral equipment sector, telecommunications network sector, information services sector, building materials and construction sector, and shipping sector. Factor 3 explains the monthly returns of the biotechnology and medical care sector index.
    In individual stock analysis, Factor 1 explains the returns of Taiwan Cement (1101) and Hsing Ta Cement (1109). Factor 2 significantly explains returns for the server group in the computer and peripheral equipment industry, wireless communication equipment stocks in telecommunications services, information services stocks, construction company stocks, and the sea transportation group in shipping. Factor 3 explains returns for selected biotechnology and medical care stocks, including China Petrochemical Development Corporation (1701), China Chemical & Pharmaceutical Co. (1762), Johnson Chemical Pharmaceutical Works Co., Ltd. (1795), and Adimmune Corporation (4142).
    Finally, the study's results help identify industries and individual stocks in the Taiwanese market that are more sensitive to economic fluctuations or changes in macroeconomic variables, providing valuable insights for investors in portfolio construction and asset allocation.
    Reference: 張卓眾與王祝三(2013),「台灣時間序列與橫斷面股票報酬之研究:不同模型設定、投資組合建構以及樣本選擇下之再檢測」,《經濟研究》,49(1),31-88。

    顧廣平(2005),「單因子、三因子或四因子模式?」,《證券市場發展季刊》,17(2),101-146。

    Bai, J. and Ng, S. (2013), “Principal Components Estimation and Identification of Static Factors”, Journal of Economics, 176, 18-29.

    Holloway, R. (2011), “An Empirical investigation of the APT in a Frontier Stock Market,” Munich Personal RePEc Archive, No.38675.

    Onatski, A. (2010), “Determining the Number of Factors from Empirical Distribution of Eigenvalues,” The Review of Economics and Statistics, 92(4), 1004-1016.

    Sarianidis, N., Giannarakis, G., Litinas, N. and Konteos, G. (2010), “A GARCH Examination of Macroeconomic Effects on U.S. Stock Market: A Distinction Between the Total Index and the Sustainability Index,” European Research Studies, Issue(1).

    Uematsu, Y. and Yamagata, T. (2019), “Estimation of Weak Factor Model,” Ecinstor, ISER Discussion Paper, No.1053.

    Uematsu, Y. and Yamagata, T. (2021), “Inference in Sparsity-induced Weak Factor Models,” Journal of Business & Economic Statistics.
    Description: 碩士
    國立政治大學
    經濟學系
    111258023
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111258023
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    802301.pdf1129KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback