English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51120091      Online Users : 832
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/152473
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152473


    Title: 模糊性與資產定價:台灣加權指數的實證研究與機器學習應用
    Ambiguity and asset pricing: Empirical study and machine learning applications using the Taiwan Weighted Stock Index
    Authors: 林晉毅
    Lin, Chin-I
    Contributors: 廖四郎
    Liao, Szu-Lang
    林晉毅
    Lin, Chin-I
    Keywords: 模糊性
    Knightian uncertainty
    Ambiguity
    神經網路
    LSTM
    台灣加權指數
    Knightian uncertainty
    Ambiguity
    Neural network
    LSTM
    Taiwan Weighted Stock Index
    Date: 2024
    Issue Date: 2024-08-05 12:18:55 (UTC+8)
    Abstract: 傳統資產定價模型主要考慮風險,而忽略了機率本身的不確定性,即模糊性。本研究採用台灣加權指數作為研究對象,參考了Brenner and Izhakian (2018)提出的實證方法來測量台灣市場中的模糊性程度,並從台灣的市場數據中評估投資者對模糊性的態度。實證結果顯示,模糊性在股票市場中具有價格,且當預期的有利報酬機率較高時,投資者對模糊性表現出厭惡態度。此外,本研究嘗試將模糊性作為一種新指標,並將其引入神經網路與長短期記憶(LSTM)機器學習模型,以觀察其對股票價格預測的影響。結果顯示,加入模糊性後,機器學習模型的預測準確度有提升的趨勢。
    Traditional asset pricing models primarily focus on risk, often neglecting the uncertainty inherent in probabilities, known as ambiguity. This research examines the Taiwan Weighted Index, using the empirical method by Brenner and Izhakian (2018) to quantify the level of ambiguity in the Taiwanese market. By analyzing market data from Taiwan, the study evaluates investor attitudes towards ambiguity. The findings indicate that ambiguity is indeed reflected in stock market prices, and investors show aversion to ambiguity when the likelihood of favorable returns is high. Furthermore, this study explores incorporating ambiguity as a new indicator into neural network and long short-term memory (LSTM) machine learning models to assess its impact on stock price predictions. The results indicate an improvement in prediction accuracy for machine learning models with the inclusion of ambiguity.
    Reference: 參考文獻
    Augustin, P., & Izhakian, Y. (2020). Ambiguity, volatility, and credit risk. The review of financial studies, 33(4), 1618-1672.
    Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business & Economic Statistics Section, 1976.
    Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654.
    Brenner, M., & Izhakian, Y. (2012). Asset Pricing and Ambiguity: Empirical Evidence, working paper.
    Brenner, M., & Izhakian, Y. (2018). Asset pricing and ambiguity: Empirical evidence. Journal of Financial Economics, 130(3), 503-531.
    Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics, 31(3), 281-318. https://doi.org/https://doi.org/10.1016/0304-405X(92)90037-X
    Drechsler, I. (2013). Uncertainty, time‐varying fear, and asset prices. The Journal of Finance, 68(5), 1843-1889.
    Epstein, L. G., & Schneider, M. (2003). Recursive multiple-priors. Journal of Economic Theory, 113(1), 1-31.
    Epstein, L. G., & Schneider, M. (2008). Ambiguity, Information Quality, and Asset Pricing. The Journal of Finance, 63(1), 197-228. https://doi.org/https://doi.org/10.1111/j.1540-6261.2008.01314.x
    Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654-669.
    French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of Financial Economics, 19(1), 3-29. https://doi.org/https://doi.org/10.1016/0304-405X(87)90026-2
    Gagliardini, P., Porchia, P., & Trojani, F. (2008). Ambiguity aversion and the term structure of interest rates. The review of financial studies, 22(10), 4157-4188.
    Ghysels, E., Santa-Clara, P., & Valkanov, R. (2005). There is a risk-return trade-off after all. Journal of Financial Economics, 76(3), 509-548. https://doi.org/https://doi.org/10.1016/j.jfineco.2004.03.008
    Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801.
    Guo, H., & Whitelaw, R. F. (2006). Uncovering the Risk–Return Relation in the Stock Market. The Journal of Finance, 61(3), 1433-1463. https://doi.org/https://doi.org/10.1111/j.1540-6261.2006.00877.x
    Harvey, C. R. (2001). The specification of conditional expectations. Journal of Empirical Finance, 8(5), 573-637.
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    Izhakian, Y. Y. (2012). Ambiguity Measurement. Available at SSRN 1938628.
    Jahan-Parvar, M. R., & Liu, H. (2014). Ambiguity aversion and asset prices in production economies. The review of financial studies, 27(10), 3060-3097.
    Jeong, D., Kim, H., & Park, J. Y. (2015). Does ambiguity matter? Estimating asset pricing models with a multiple-priors recursive utility. Journal of Financial Economics, 115(2), 361-382.
    Ju, N., & Miao, J. (2012). Ambiguity, learning, and asset returns. Econometrica, 80(2), 559-591.
    Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In Handbook of the fundamentals of financial decision making: Part I (pp. 99-127). World Scientific.
    Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under ambiguity. Econometrica, 73(6), 1849-1892.
    Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197, 116659.
    Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. The Review of Economics and Statistics, 47(1), 13.
    Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.2307/2975974
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115-133.
    Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of Financial Economics, 8(4), 323-361. https://doi.org/https://doi.org/10.1016/0304-405X(80)90007-0
    Minsky, M., & Papert, S. (1969). An introduction to computational geometry. Cambridge tiass., HIT, 479(480), 104.
    Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the econometric society, 347-370.
    Pástor, Ľ., Sinha, M., & Swaminathan, B. (2008). Estimating the Intertemporal Risk–Return Tradeoff Using the Implied Cost of Capital. The Journal of Finance, 63(6), 2859-2897. https://doi.org/https://doi.org/10.1111/j.1540-6261.2008.01415.x
    Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0
    Scholes, M., & Williams, J. (1977). Estimating betas from nonsynchronous data. Journal of Financial Economics, 5(3), 309-327.
    Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.
    Welch, I., & Goyal, A. (2007). A Comprehensive Look at The Empirical Performance of Equity Premium Prediction. The review of financial studies, 21(4), 1455-1508. https://doi.org/10.1093/rfs/hhm014
    Yu, J., & Yuan, Y. (2011). Investor sentiment and the mean–variance relation. Journal of Financial Economics, 100(2), 367-381. https://doi.org/https://doi.org/10.1016/j.jfineco.2010.10.011
    Description: 碩士
    國立政治大學
    金融學系
    111352034
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111352034
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    203401.pdf1739KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback