政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152469
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113451/144438 (79%)
造访人次 : 51272645      在线人数 : 887
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/152469


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/152469


    题名: 基於分位數迴歸森林在選擇權結算價 報酬率預測及交易策略應用
    Based on Quantile Regression Forests for Predicting Option Settlement Price Returns and Trading Strategy Applications
    作者: 陳旻寬
    Chen, Min-Kuan
    贡献者: 廖四郎
    Liao, Szu-Lang
    陳旻寬
    Chen, Min-Kuan
    关键词: 分位數迴歸森林
    分位數迴歸
    選擇權投資組合
    選擇權結算價報酬率預測
    選擇權交易
    Quantile Regression Forests
    Quantile Regression
    Options portfolios
    Options settlement price return forecasting
    Options trading
    日期: 2024
    上传时间: 2024-08-05 12:18:11 (UTC+8)
    摘要: 選擇權透過投資組合以應對市場預期或避險需求,顯示出其獨特優勢。然而,過往的選擇權研究多聚焦於定價和避險策略,對於確定投資組合履約價的探討相對缺乏。為解決此問題,本研究採用基於隨機森林的分位數迴歸森林(Quantile Regression Forests, QRF),預測選擇權結算價的報酬率分位數並建立信賴區間。本文採用了蝴蝶價差策略和兀鷹價差策略,這兩種適用於預期市場波動範圍內的選擇權投資組合策略。透過對臺灣加權股價指數選擇權(臺指選)的週選擇權進行實證分析和回測交易,比較了QRF與傳統分位數迴歸(Quantile Regression, QR)的效能。結果顯示,QRF在預測準確度、勝率及報酬率方面均顯著優於QR,並在統計上達到顯著的正報酬率。這些發現強調了分位數預測與選擇權交易策略相結合在市場不確定性中的盈利潛力,並突出了機器學習在捕捉金融市場特徵方面的有效性。未來研究將探索結合深度學習以提高預測準確性,進行資金管理以優化風險控制,並將這些策略擴展到更多金融產品及選擇權投資組合。
    Options demonstrate unique advantages through portfolio adjustments to meet market expectations or hedging needs. However, past research on options has predominantly focused on pricing and hedging strategies, with less discussion on determining strike prices for portfolios. To address this issue, this study employs Quantile Regression Forests (QRF), based on random forest algorithms, to predict the quantile of option settlement price returns and establish confidence intervals. This paper utilizes strategies such as the butterfly spread and condor spread, which are suited to expected market volatility ranges. Empirical analysis and backtesting trades were conducted using weekly options on the Taiwan Capitalization Weighted Stock Index (TAIEX options), comparing the efficacy of QRF with traditional Quantile Regression (QR). The results show that QRF significantly outperforms QR in terms of prediction accuracy, win rate, and return, achieving statistically significant positive returns. These findings highlight the profit potential of combining quantile forecasting with options trading strategies amidst market uncertainties and underscore the effectiveness of machine learning in capturing financial market characteristics. Future research will explore integrating deep learning to enhance predictive accuracy, optimize risk control through capital management, and extend these strategies to a broader range of financial products and options portfolio strategies.
    參考文獻: Ayala, Jordan, García-Torres, Miguel, Noguera, José Luis Vázquez, Gómez-Vela, Francisco, & Divina, Federico. (2021). Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems, 225, 107119.
    Bali, Turan G., Beckmeyer, Heiner, Mörke, Mathis, & Weigert, Florian. (2023). Option Return Predictability with Machine Learning and Big Data. The Review of Financial Studies, 36(9), 3548-3602.
    Baruník, Jozef, & Čech, František. (2021). Measurement of common risks in tails: A panel quantile regression model for financial returns. Journal of Financial Markets, 52, 100562.
    Basak, Suryoday, Kar, Saibal, Saha, Snehanshu, Khaidem, Luckyson, & Dey, Sudeepa Roy. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552-567.
    Baur, Dirk G., & Dimpfl, Thomas. (2019). A Quantile Regression Approach to Estimate the Variance of Financial Returns. Journal of Financial Econometrics, 17(4), 616-644.
    Baur, Dirk, & Schulze, Niels. (2005). Coexceedances in financial markets—a quantile regression analysis of contagion. Emerging Markets Review, 6(1), 21-43.
    Breiman, Leo. (2001). Random Forests. Machine Learning, 45(1), 5-32.
    Breiman, Leo , Friedman, Jerome , Olshen, R.A. , & Stone, Charles J. . (1984). Classification and Regression Trees (1st ed.). Chapman and Hall/CRC.
    Cannon, Alex J. (2011). Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers & Geosciences, 37(9), 1277-1284.
    Chronopoulos, Ilias, Raftapostolos, Aristeidis, & Kapetanios, George. (2023). Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression. Journal of Financial Econometrics, 1-34.
    Cutler, Adele, Cutler, D. Richard, & Stevens, John R. (2012). Random Forests. In Cha Zhang & Yunqian Ma (Eds.), Ensemble Machine Learning: Methods and Applications (pp. 157-175). Springer New York.
    Dawid, A. P. (1984). Present Position and Potential Developments: Some Personal Views: Statistical Theory: The Prequential Approach. Journal of the Royal Statistical Society. Series A (General), 147(2), 278-292.
    Galit, Shmueli. (2010). To Explain or to Predict? Statistical Science, 25(3), 289-310.
    Gneiting, Tilmann, & Raftery, Adrian E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102(477), 359-378.
    Gupta, Rangan, Ji, Qiang, Pierdzioch, Christian, & Plakandaras, Vasilios. (2023). Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023. Finance Research Letters, 58, 104501.
    Gyamerah, Samuel Asante, & Moyo, Edwin. (2020). Long-Term Exchange Rate Probability Density Forecasting Using Gaussian Kernel and Quantile Random Forest. Complexity, 2020, 1972962.
    Henrique, Bruno Miranda, Sobreiro, Vinicius Amorim, & Kimura, Herbert. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226-251.
    Hull, John. (2018). Options, Futures, and Other Derivatives (10th ed.). Pearson India.
    Ivașcu, Codruț-Florin. (2021). Option pricing using Machine Learning. Expert Systems with Applications, 163, 113799.
    Johnson, Reid A. (2024). quantile-forest: A Python Package for Quantile Regression Forests. Journal of Open Source Software, 9(93), 5976.
    Koenker, Roger, & Bassett, Gilbert. (1978). Regression Quantiles. Econometrica, 46(1), 33-50.
    Kolmogorov, An. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell'inst Ital Degli Att, 4, 89-91.
    Kumbure, Mahinda Mailagaha, Lohrmann, Christoph, Luukka, Pasi, & Porras, Jari. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197, 116659.
    Liu, Dehong, Liang, Yucong, Zhang, Lili, Lung, Peter, & Ullah, Rizwan. (2021). Implied volatility forecast and option trading strategy. International Review of Economics & Finance, 71, 943-954.
    Lohrmann, Christoph, & Luukka, Pasi. (2019). Classification of intraday S&P500 returns with a Random Forest. International Journal of Forecasting, 35(1), 390-407.
    Madhu, Biplab, Rahman, Md Azizur, Mukherjee, Arnab, Islam, Md Zahidul, Roy, Raju, & Ali, Lasker Ershad. (2021). A comparative study of support vector machine and artificial neural network for option price prediction. Journal of Computer and Communications, 9(05), 78-91.
    Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50-60.
    Meinshausen, Nicolai, & Ridgeway, Greg. (2006). Quantile regression forests. Journal of machine learning research, 7(6).
    Meligkotsidou, Loukia, Panopoulou, Ekaterini, Vrontos, Ioannis D., & Vrontos, Spyridon D. (2014). A Quantile Regression Approach to Equity Premium Prediction. Journal of Forecasting, 33(7), 558-576.
    Nazareth, Noella, & Ramana Reddy, Yeruva Venkata. (2023). Financial applications of machine learning: A literature review. Expert Systems with Applications, 219, 119640.
    Ozbayoglu, Ahmet Murat, Gudelek, Mehmet Ugur, & Sezer, Omer Berat. (2020). Deep learning for financial applications : A survey. Applied Soft Computing, 93, 106384.
    Pedregosa, Fabian, Varoquaux, Gaël, Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand, Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, & Dubourg, Vincent. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
    Pradeepkumar, Dadabada, & Ravi, Vadlamani. (2017). Forecasting financial time series volatility using Particle Swarm Optimization trained Quantile Regression Neural Network. Applied Soft Computing, 58, 35-52.
    Probst, Philipp, Wright, Marvin N., & Boulesteix, Anne-Laure. (2019). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3), e1301.
    Sezer, Omer Berat, Gudelek, Mehmet Ugur, & Ozbayoglu, Ahmet Murat. (2020). Financial time series forecasting with deep learning : A systematic literature review: 2005–2019. Applied Soft Computing, 90, 106181.
    Smirnov, Nikolai V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscou, 2(2), 3-14.
    Taylor, James W. (2000). A quantile regression neural network approach to estimating the conditional density of multiperiod returns. Journal of Forecasting, 19(4), 299-311.
    Tyralis, Hristos, & Papacharalampous, Georgia. (2024). A review of predictive uncertainty estimation with machine learning. Artificial Intelligence Review, 57(4), 94.
    Waldmann, Elisabeth. (2018). Quantile regression: A short story on how and why. Statistical Modelling, 18(3-4), 203-218.
    Wilcoxon, Frank. (1992). Individual Comparisons by Ranking Methods. In Samuel Kotz & Norman L. Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution (pp. 196-202). Springer New York.
    Wu, Jimmy Ming-Tai, Wu, Mu-En, Hung, Pang-Jen, Hassan, Mohammad Mehedi, & Fortino, Giancarlo. (2020). Convert index trading to option strategies via LSTM architecture. Neural Computing and Applications.
    Wu, M. E., & Chung, W. H. (2018). A Novel Approach of Option Portfolio Construction Using the Kelly Criterion. IEEE Access, 6, 53044-53052.
    Wu, Mu-En, Syu, Jia-Hao, & Chen, Chien-Ming. (2022). Kelly-Based Options Trading Strategies on Settlement Date via Supervised Learning Algorithms. Computational Economics, 59(4), 1627-1644.
    Yuan, X., Yuan, J., Jiang, T., & Ain, Q. U. (2020). Integrated Long-Term Stock Selection Models Based on Feature Selection and Machine Learning Algorithms for China Stock Market. IEEE Access, 8, 22672-22685.
    描述: 碩士
    國立政治大學
    金融學系
    111352021
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111352021
    数据类型: thesis
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    202101.pdf2861KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈