Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/152442
|
Title: | 逆物流供應鏈之回收品處置決策–以 AS 公司為例 Disposal Decisions of Recycled Product in Reverse Logistics Supply Chain - Take AS company as an example |
Authors: | 周思伶 Chou, Szu-Ling |
Contributors: | 陳立民 周思伶 Chou, Szu-Ling |
Keywords: | 逆物流 處置決策 回收再利用 再製造 reverse logistics disposal decision recycling remanufacturing |
Date: | 2024 |
Issue Date: | 2024-08-05 12:13:04 (UTC+8) |
Abstract: | 全球商業長期以來遵循的傳統線性經濟模式,即「採購–生產–使用–丟棄」。隨著人口激增和技術進步,原物料需求急遽擴大,加速地球有限資源的耗竭。為了減緩供需失衡的惡化速度,全球開始推動「製造–使用–循環」的循環經濟,以實現資源的回饋性和再生性。半導體企業也開始擁抱循環經濟的商業模式,透過逆物流供應鏈的系統導入實現封閉的資源循環流程。除了提高消耗性原料的再利用性,亦提升大型機械設備、生產工具及維修工具等使用效率。 本研究將重點探討半導體設備廠的回收零件,著眼於個案公司 AS 公司的維修零件回收再生的商業模式。透過訪談發現 AS 公司會將退回零件 (Defect 零件和 DOA 零件) 進行檢驗與評估,並根據各項評斷準則的審核結果,決定後續需做哪一項再處理作業。基於各回收品種類有其所屬的特性,各產業對於回收處置決策的評估項目不盡相同,而目前相關主題文獻並未對半導體產業的回收處置決策進行深入著墨。 因此,本研究透過文獻統整逆物流的主要活動後,將研究重點放置於檢驗和處理階段,歸納過去學者採用之回收處置決策的評估準則,並結合訪談內容羅列出影響此決策的影響因子並設計層級架構,考量面向包含再處理成本面、零件特徵面、零件需求面。近一步透過層級分析法解析專家問卷之內容,發現「零件需求面」為 Defect 零件的回收處置決策是最重要之考量因素;「零件特徵面」為 DOA 零件的回收處置決策是最重要之考量因素。而兩者零件的最後順位皆是再處理成本面,和「目前個案公司實行首要採用的評估準則即為再處理成本面」的結果相異。 此外,針對在固定週期內拆卸時或機台系統當機進行修機時發現零件外觀及功能耗損的 Defect 零件,應優先採用「再製造 Remanufacture」方案;針對到貨即損但經標準化檢測仍可能存在隱性瑕疵的 DOA 零件,應優先採用「維修 Repair」方案。 本研究針對實際案例進行深入探討,瞭解個案公司在進行回收處置決策時,最應重視的評估準則及屬性,以及針對不同退回原因的維修零件之最適回收處置方案,其結果亦反映出與過往探討其他產業及回收品的文獻有不同之見解,在實務上幫助半導體設備廠釐清決策時最優先的思考點及優先採取的行動方案。 Global business development has long adhered to the traditional linear economic model of "purchase-product-use-discard”. However, the exponential growth in population, technological advancements, and the rising demand of raw materials hasten the depletion of the earth's finite resources. To mitigate the imbalance between supply and demand, the global has initiated into the cyclical process of "product-use-recycle" to achieve resource feedback and regeneration. Semiconductor industry has also successively adopted the circular economy business model by implementing reverse logistics supply chain systems to create a closed-loop resource recycling process. This approach not only enhances the reusability of consumable raw materials but also improves the efficiency of utilizing large machinery, production tools, and maintenance tools. This study focused on the recycling of parts within semiconductor equipment factories. According to the interview of AS Company, it would first inspect and evaluate the returned parts’ (Defect parts and DOA parts) status by reviewing various criteria. Based on the description of the status, AS Company could then determine the parts’ recovery options. Conceivably, different industries use different criteria for disposal decisions based on the characteristics of each product type. Besides, there is a lack of comprehensive coverage in literature review on the disposal decisions in semiconductor industry. To address this gap, this study summarized the primary activities of reverse logistics and organized the criteria of disposal decisions through literature review and company interview. The research hierarchical structure considered aspects such as “Processing cost”, “Characteristics of part”, and “Demand for parts”. This study adopted the analytic hierarchy process (AHP) to analyze expert questionnaires. The result showed that "Demand for parts" was the most crucial consideration for disposal decisions of Defect parts. Conversely, "Characteristics of part" is the primary consideration for disposal decisions of DOA parts. And it turned out that “Processing cost” is the last criteria to take into consideration while making disposal decisions of these two repair parts. This result differed from the current evaluation criterion adopted by the case company. Additionally, "Remanufacture" solution was recommended to Defect parts and "Repair" should be prioritized to DOA parts. This study helped AS Company identifying the most important criteria and attributes when making disposal decisions for repair parts. The findings contributed to clarifying the primary think points and action plans for semiconductor equipment manufacturers in decision-making processes. |
Reference: | 中文文獻 循環台灣基金會、天下Web only,2000。生產設備怎麼做到循環經濟?艾司摩爾、台中精機這樣做,天下雜誌。https://www.cw.com.tw/article/5101427?template=transformers,搜尋日期:2023年9月30日。 鄧振源,2005。計畫評估-方法與應用。臺北:海洋大學運籌規劃與管理研究中心。 鄧振源、曾國雄,1989。層級分析法 (AHP) 的內涵性與應用 (上)。中國統計學報,第二十七卷六期:13707-13724。 鄧振源、曾國雄,1989。層級分析法 (AHP) 的內涵性與應用 (下)。中國統計學報,第二十七卷七期:13767-13786。
英文文獻 Agrawal, S., Singh, R.K., & Murtaza, Q. 2016. Disposition decisions in reverse logistics by using AHP-fuzzy TOPSIS approach. Journal of Modelling in Management, 11: 932-948. Akdoğan, M. & Coşkun, Ayşen. 2012. Drivers of Reverse Logistics Activities: An Empirical Investigation. Procedia - Social and Behavioral Sciences, 58: 1640-1649. Balwada, J., Samaiya, S., & Mishra, R. P. 2021. Packaging plastic waste management for a circular economy and identifying a better waste collection system using analytical hierarchy process (AHP). Procedia CIRP, 98: 270-275. Blackburn, J. D., Guide, V. D. R., Souza, G. C., & Van Wassenhove, L. N. 2004. Reverse supply chains for commercial returns. California Management Review, 46 (2): 6-22. Bovea, M.D. & Vidal, R. 2004. Increasing Product Value by Integrating Environmental Impact, Costs and Customer Valuation. Resources, Conservation and Recycling, 41: 133-145. Carter, C. R., & Ellram, L. M. 1998. Reverse logistics: A review of the literature and framework for future investigation. Journal of Business Logistics, 19 (1): 85-102. Chen, M. K., & Wang, S. C. 2010. The critical factors of success for information service industry in developing international market: Using analytic hierarchy process (AHP) approach. Expert Systems with Applications, 37 (1): 694-704. Cheng, J. H., Lee, C. M., & Tang, C. H. 2009. An application of fuzzy Delphi and fuzzy AHP on evaluating wafer supplier in semiconductor industry. WSEAS Transactions on Information Science and Applications, 6 (5): 756-767. Chung, C., & Wee, H.M. 2011. Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system. International Journal of Production Economics, 129 (1): 195-203. De Brito, M., Flapper, S. D., & Dekker, R. 2002. Reverse logistics (No. EI 2002-21). Dehghanbaghi, M., Hosseininasab, H., & Sadeghieh, A. 2016. A hybrid approach to support recovery strategies (A case study). Journal of Cleaner Production, 113: 717-729. Dowlatshahi, S. 2000. Developing a theory of reverse logistics. Interfaces, 30 (3): 143-155. Fernandez, I., Puente, J., García, N., & Gomez, A. 2008. A decision-making support system on a products recovery management framework. A fuzzy approach. Concurrent Engineering, 16 (2): 129-138. Ferrer, G., & Whybark, D. C. 2000. From garbage to goods: Successful remanufacturing systems and skills. Business Horizons, 43 (6): 55-64. Ghoumrassi, A., & Țigu, G. 2017. The impact of the logistics management in customer satisfaction. In Proceedings of the International Conference on Business Excellence, 11 (1): 292-301. Guide Jr, V. D. R. & Van Wassenhove, L. N. 2002. The Reverse Supply Chain. Harvard Business Review, 80 (2): 25-26. Hazen, B. T., Hall, D. J., & Hanna, J. B. 2012. Reverse logistics disposition decision‐making: Developing a decision framework via content analysis. International Journal of Physical Distribution & Logistics Management, 42 (3): 244-274. Hung Lau, K., & Wang, Y. 2009. Reverse logistics in the electronic industry of China: a case study. Supply Chain Management: An International Journal, 14 (6): 447-465. Jack, E. P., Powers, T. L., & Skinner, L. 2010. Reverse logistics capabilities: antecedents and cost savings. International Journal of Physical Distribution & Logistics Management, 40 (3): 228-246. Kang, H. Y., & Lee, A. H. 2007. Priority mix planning for semiconductor fabrication by fuzzy AHP ranking. Expert Systems with Applications, 32 (2): 560-570. Kopicki, R., Berg, M. J., & Legg, L. 1993. Reuse and recycling-reverse logistics opportunities. Council of Logistics Management. Krikke, H., Blanc, I. L., & Van De Velde, S. 2004. Product modularity and the design of closed-loop supply chains. California management review, 46 (2): 23-39. Lambert, D. M., & Stock, J. R. 1982. Strategic Planning for Physical Distribution. Journal of Business Logistics, 3 (2): 26-46. Li, J., González, M., & Zhu, Y. 2009. A hybrid simulation optimization method for production planning of dedicated remanufacturing. International Journal of Production Economics, 117 (2): 286-301. Lyons, D. 2005. Integrating waste, manufacturing and industrial symbiosis: an analysis of recycling, remanufacturing and waste treatment firms in Texas. Local Environment, 10 (1): 71-86. Madaan, J., Chan, F. T., & Niu, B. 2016. Strategies for evaluating performance of flexibility in product recovery system. International Journal of Production Research, 54 (10): 2895-2906. Mishra, R., & Napier, R. 2014. Reverse logistics: Antecedents of successful implementation and firm performance effects. Journal of Supply Chain and Operations Management, 12 (2): 33-49. Mollenkopf, D. A., Frankel, R., & Russo, I. 2011. Creating value through returns management: Exploring the marketing-operations interface. Journal of Operations Management, 29 (5): 391-403. Pinna, R., & Carrus, P. P. 2012. Reverse logistics and the role of fourth party logistics provider. Pathways to supply chain excellence, 91-114. Pohlen, T. L., & Theodore Farris, M. 1992. Reverse logistics in plastics recycling. International Journal of Physical Distribution & Logistics Management, 22 (7): 35-47. Pokharel, S., & Mutha, A. 2009. Perspectives in reverse logistics: a review. Resources, Conservation and Recycling, 53 (4): 175-182. Reverse Logistics Executive Council. 2012. Organização sem fins lucrativos para desenvolver as melhores práticas para logística reversa, Reno-Nevada [online] http://www.rlec.org/glossary. htm (accessed August 2012). Rogers, D.S. & Tibben-Lembke, R.S. 1999. Going Backwards: Reverse Logistics Trends and Practices. Reverse Logistics Executive Council. Saaty, T.L. 1980. The Analytic Hierarachy Process. McGraw-Hill. Sabharwal, S., & Garg, S. 2013. Determining cost effectiveness index of remanufacturing: A graph theoretic approach. International Journal of Production Economics, 144 (2): 521-532. Sangwan, K. S. 2017. Key activities, decision variables and performance indicators of reverse logistics. Procedia Cirp, 61: 257-262. Schmidheiny, S. 1992. The Business Logic of Sustainable Development. Columbia Journal of World Business, 27 (4): 18-24. Shaik, M., & Abdul‐Kader, W. 2012. Performance measurement of reverse logistics enterprise: a comprehensive and integrated approach. Measuring Business Excellence, 16 (2): 23-34. Shaik, M. N., & Abdul-Kader, W. 2014. Comprehensive performance measurement and causal-effect decision making model for reverse logistics enterprise. Computers & Industrial Engineering, 68: 87-103. Skinner, L. R., Bryant, P. T., & Glenn Richey, R. 2008. Examining the impact of reverse logistics disposition strategies. International Journal of Physical Distribution & Logistics Management, 38 (7): 518-539. Srivastava, S. K. 2008. Network design for reverse logistics. Omega, 36 (4): 535-548. Stock J.R. 1992. Reverse logistics. Council of Logistics Management, Oak Brook, Illinois. Subramanian, N., Gunasekaran, A., Abdulrahman, M. D., Liu, C., & Su, D. 2014. Reverse logistics in the Chinese auto-parts firms: implementation framework development through multiple case studies. International Journal of Sustainable Development & World Ecology, 21 (3): 223-234. Tibben‐Lembke, R. S., & Rogers, D. S. 2002. Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7 (5): 271-282. Tiwari, R. 2013. Identification of factors affecting reverse chain performance in relation to customer satisfaction using ISM modelling & MICMAC analysis. Uncertain Supply Chain Management, 1 (4): 237-252. Vorasayan, J., & Ryan, S. M. 2006. Optimal price and quantity of refurbished products. Production and Operations Management, 15 (3): 369-383. Waris, M., Panigrahi, S., Mengal, A., Soomro, M. I., Mirjat, N. H., Ullah, M., ... & Khan, A. 2019. An application of analytic hierarchy process (AHP) for sustainable procurement of construction equipment: Multicriteria-based decision framework for Malaysia. Mathematical Problems in Engineering, 1-20. Wadhwa, S., Madaan, J., & Chan, F. T. S. 2009. Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection. Robotics and Computer-Integrated Manufacturing, 25 (2): 460-469. Yucesan, M., & Kahraman, G. 2019. Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP. Energy policy, 126: 343-351. Ziout, A., Azab, A., & Atwan, M. 2014. A holistic approach for decision on selection of end-of-life products recovery options. Journal of cleaner production, 65: 497-516. |
Description: | 碩士 國立政治大學 企業管理研究所(MBA學位學程) 111363069 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111363069 |
Data Type: | thesis |
Appears in Collections: | [企業管理研究所(MBA學位學程)] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
306901.pdf | | 4297Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|