政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152437
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50930717      Online Users : 945
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > MBA Program > Theses >  Item 140.119/152437
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152437


    Title: 台灣半導體企業營收預測:Lasso 迴歸與總經指標
    Enhancing Revenue Forecasting for Taiwan's Semiconductor Industry: A Lasso Regression Approach with Macroeconomic Indicators
    Authors: 林琨翔
    Lin, Kun-Xiang
    Contributors: 莊皓鈞
    Chuang, Hao-Chun
    林琨翔
    Lin, Kun-Xiang
    Keywords: 半導體
    營收預測
    Lasso 迴歸
    總經指標
    科技半導體
    預測模型
    Semiconductor Industry
    Revenue Forecasting
    Lasso Regression
    Macroeconomic Indicators
    Technology
    Forecasting Model
    Date: 2024
    Issue Date: 2024-08-05 12:12:08 (UTC+8)
    Abstract: 營收預測對於產能規劃至關重要,能夠有效預估客戶需求,進而優化生產資源配置。本研究採用 Lasso 迴歸分析,將總體經濟指標整合至營收預測模型中,以提升預測準確度。我們以台灣半導體企業為研究對象,分析其營收數據與總體經濟指標的關聯性,探討不同供應鏈角色所對應的關鍵總體經濟指標。研究結果發現,Lasso 迴歸分析後,關鍵總經指標在提前 4-6 個月的營收預測上所提升的準確度顯著優於提前 1-3 個月,且關鍵總體經濟指標會隨目標公司的特性及扮演的角色而有所差異,進一步解釋經濟變化對半導體企業營收的影響。傳統的營收預測方法主要依賴專家知識和經驗,存在局限性。本研究提議採用資料驅動方法建立營收預測的標準程序,使企業能夠根據分析結果做出商業決策。
    As the Revenue forecasting plays a crucial role to predict our customer demands in order to prepare for the production. This study delves into the integration of macroeconomic indicators into revenue forecast models using Lasso regression analysis to enhance accuracy. We conducted an analysis of revenue data from Taiwan semiconductor companies and macroeconomic indicators to identify the most influential macroeconomic indicators at various stages within the supply chain. The results indicate that after the utilization of Lasso regression, incorporating macroeconomic indicators significantly improves revenue prediction accuracy for the 4-6 month prior compared to the 1-3 month prior. Additionally, we discovered that the key macroeconomic indicators varied based on the characteristics of the target companies, providing some insights behind of their relationship. Given the limitations of traditional revenue prediction methods based on expert knowledge, we advocate for a data-driven approach to establish a standardized procedure for revenue predictions, enabling informed business decisions based on the analysis results.
    Reference: Chen, H. L. 2008. Using Financial and Macroeconomic Indicators to Forecast Sales of Large Development and Construction Firms. Journal of Real Estate Finance and Economics, 40: 310–331.

    Dzikevičius, A., & Šaranda, S. 2016. Establishing a set of macroeconomic factors explaining variation over time of performance in business sectors. Verslas: Teorija ir Praktika, 17: 159–166.

    Elliott, G., Gargano, A., & Timmermann, A. 2015. Complete subset regressions with large-dimensional sets of predictors. Journal of Economic Dynamics & Control, 54: 86–110.

    Gajewar, A., & Bansal, G. 2016. Revenue forecasting for enterprise products. arXiv preprint, arXiv:1701.06624.

    Hung, H. C., Chiu, Y. C., & Wu, M. C. 2017. Analysis of competition between IDM and fabless-foundry business models in the semiconductor industry. IEEE Transactions on Semiconductor Manufacturing, 30: 254-260.

    Hung, S. W., He, D.-S., & Lu, W.-M. 2014. Evaluating the dynamic performances of business groups from the carry-over perspective: A case study of Taiwan’s semiconductor industry. Omega, 46: 1-10.

    Sagaert, Y. R., Aghezzaf, E. H., Kourentzes, N., & Desmet, B. 2018. Tactical sales forecasting using a very large set of macroeconomic indicators. European Journal of Operational Research, 264: 558–569.

    Sanders, N.R., & Ritzman, L.P. 1991. On knowing when to switch from quantitative to judgemental forecasts. International Journal of Operations & Production Management, 11(6): 27–37.

    Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1): 267-288.

    Tibshirani, R. 2011. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodological), 73(3): 273-282.

    Tsai, B. H. 2009. Dynamic modeling and simulation of Taiwan's IC industrial clustering to China. PICMET: Portland International Center for Management of Engineering and Technology, Proceedings, 3307-3314.

    Verstraete, G., Aghezzaf, E. H., & Desmet, B. 2020. A leading macroeconomic indicators’ based framework to automatically generate tactical sales forecasts. Computers & Industrial Engineering, 139: 106-169.

    Wang, C.-T., & Chiu, C.-S. 2014. Competitive strategies for Taiwan’s semiconductor industry in a new world economy. Technology in Society, 36: 60–73.

    Whitfield, R.I., & Duffy, A.H.B. 2013. Extended revenue forecasting within a service industry. International Journal of Production Economics, 141(2): 505-518.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    111363051
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111363051
    Data Type: thesis
    Appears in Collections:[MBA Program] Theses

    Files in This Item:

    File Description SizeFormat
    305101.pdf1146KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback