政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152130
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114401/145431 (79%)
Visitors : 53147786      Online Users : 765
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152130


    Title: 推薦系統的類別特徵工程基於熵驅動的優化
    Entropy-driven Optimization of Recommendation Systems through Categorical Feature Engineering
    Authors: 鄭竣鴻
    Zheng, Jun-Hong
    Contributors: 周珮婷
    張育瑋

    Chou, Pei-Ting
    Chang, Yu-Wei

    鄭竣鴻
    Zheng, Jun-Hong
    Keywords: 類別變數
    特徵篩選
    條件熵
    推薦系統
    機器學習
    Categorical variable
    Feature selection
    Conditional entropy
    Recommendation system
    Machine learning
    Date: 2024
    Issue Date: 2024-07-01 13:27:41 (UTC+8)
    Abstract: 特徵篩選在機器學習中扮演著關鍵角色,它有助於提高模型的準確性和效率,而條件熵是信息理論中一個用於評估特徵相關性的指標,它考慮了特徵之間的條件關係,有助於發現與目標變量密切相關的特徵。本研究旨在探討條件熵作為特徵篩選方法在大量類別型變數資料集的應用。以KKbox音樂資料集為例,利用條件熵在類別變數特徵篩選後的結果,評估篩選後的特徵集對模型性能的影響。我們的實驗結果顯示,我們能夠獲得一個具有較少特徵但仍具有良好性能的模型。這表明條件熵可以作為一種有效的特徵篩選方法,幫助我們發現與用戶聽歌行為密切相關的特徵,從而簡化大量資料集並提升模型的運算效率。
    Feature selection plays a crucial role in machine learning as it helps enhance the accuracy and efficiency of models. Conditional entropy is an index from information theory used to evaluate the relevance of features, considering the conditional relationships between them. This helps in identifying features that are closely related to the target variable. This study aims to explore the application of conditional entropy as a feature selection method in datasets with a large number of categorical variables. Taking the KKbox music dataset as an example, we evaluate the impact on model performance by assessing the feature set selected through conditional entropy in categorical variable. Our experimental results show that we were able to obtain a model with fewer features but still maintaining good performance. This demonstrates that conditional entropy can serve as an effective feature selection method, helping us to discover features closely related to user listening behavior, thereby simplifying large datasets and enhancing the computational efficiency of the model.
    Reference: Addison Howard, Arden Chiu, M. M. m. W. K. Y. (2017). Wsdm - kkbox’s music recommendation challenge.
    Chang, Y.-F. (2024). Entropy: A join between science and mind-society. change, 15:29.
    Darcy, R. and Aigner, H. (1980). The uses of entropy in the multivariate analysis of categorical variables. American Journal of Political Science, 24(1):155–174.
    Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 194–201.
    KBVresearch (2022). Global recommendation engine market size, share industry trends analysis report by type, by application, by deployment type, by organization size, by end use, by regional outlook, strategy, challenges and forecast, 2021 - 2027. https://www.kbvresearch. com/recommendation-engine-market/.
    Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.
    Klema, V. and Laub, A. (1980). The singular value decomposition: Its computation and some applications. IEEE Transactions on Automatic Control, 25(2):164–176.
    Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information. Physical review E, 69(6):066138.
    Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2017). Feature selection: A data perspective. ACM Comput. Surv., 50(6).
    Li, Q., Kim, B. M., Guan, D. H., and Oh, D. w. (2004). A music recommender based on audio features. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages 532–533.
    PyPI (2021). python package index - pypi. https://pypi.org/.
    Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP- CoNLL), pages 410–420.
    Song, Y., Dixon, S., and Pearce, M. (2012). A survey of music recommendation systems and future perspectives. In 9th international symposium on computer music modeling and retrieval, volume 4, pages 395–410. Citeseer.
    Statista (2021). Volume of data/information created, captured, copied, and consumed world- wide from 2010 to 2020, with forecasts from 2021 to 2025. https://www.statista.com/ statistics/871513/worldwide-data-created/.
    Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1):37–52. Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists.
    Zhang, J. and Fogelman-Soulié, F. (2018). Kkbox’s music recommendation challenge solution with feature engineering. In 11th ACM International Conference on Web Search and Data Mining WSDM, pages 1–8.
    Description: 碩士
    國立政治大學
    統計學系
    111354009
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354009
    Data Type: thesis
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    400901.pdf1009KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback