政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152129
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113324/144300 (79%)
造访人次 : 51150060      在线人数 : 866
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/152129


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/152129


    题名: 無母數密度函數之信賴帶建構及適合度檢定
    Confidence Bands of Nonparametric Probability Density Functions and Goodness-of-Fit Tests
    作者: 蕭名妍
    Hsiao, Ming-Yan
    贡献者: 黃子銘
    Huang, Tzee-Ming
    蕭名妍
    Hsiao, Ming-Yan
    关键词: 無母數
    密度函數估計
    信賴帶
    適合度檢定
    Nonparametric
    Density estimation
    Confidence bands
    Goodness-of-fit test
    日期: 2024
    上传时间: 2024-07-01 13:27:30 (UTC+8)
    摘要: 本文考慮了二種構建機率密度函數信賴帶的方法。一種是基於分段估計,另一種則是基於核估計式。這篇論文提出針對第二種方法的修改版本,並比較這些信賴帶的覆蓋率。此外,分別基於修改後的信賴帶和聯合機率的信賴區間構建適合度檢定,並根據模擬實驗檢驗型一誤差和檢定力。結果顯示,基於信賴區間構建的檢定相對於基於信賴帶構建的檢定,具有較高的檢定力。
    In this thesis, two approaches for constructing the confidence bands of probability density functions are considered. One is based on interpolation density estimators, and the other is based on kernel estimators. In this thesis, a modified version of the second approach is proposed. The coverage rates of those confidence bands are compared. In addition, goodness-of-fit tests are constructed based on the modified confidence bands and the confidence intervals of joint probabilities, respectively. Type I error probability and the power of those tests are examined based on simulation experiments. The results show that the test constructed based on confidence intervals has higher power than the ones based on confidence bands.
    參考文獻: [1] D’Agostino, R. and Stephens, M. Goodness of Fit Techniques. Marcel Dekker, New
    York, 1986.
    [2] Hall, P., and Titterington, D. M. On confidence bands in nonparametric density
    estimation and regression. Journal of Multivariate Analysis, 27(1):228-254, 1988.
    [3] Hall, P., and Horowitz, J. A simple bootstrap method for constructing nonparametric confidence bands for functions. The Annals of Statistics, 1892-1921, 2013.
    [4] Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function.
    The Annals of Mathematical Statistics, 27(3):832-837, 1956.
    [5] Parzen, E. On estimation of a probability density function and mode. The Annals
    of Mathematical Statistics, 33(3):1065-1076, 1962.
    [6] Sha, M., and Xie, Y. The study of different types of kernel density estimators.
    2nd International Conference on Electronics, Network and Computer Engineering
    (ICENCE 2016), Atlantis Press, 336-340, 2016.
    [7] Silverman, B. Density Estimation for Statistics and Data Analysis. New York:
    Chapman and Hall/CRC, 1986.
    [8] Bowman, A. W. An Alternative Method of Cross-validation for the Smoothing of
    Density Estimates. Biometrika, 71:353-360, 1984.
    [9] Rudemo, M. Empirical Choice of Histograms and Kernel Estimators. Scandinavian
    Journal of Statistics, 9:65-78, 1982.
    [10] Scott, D. W., and Terrell, G. R. Biased and unbiased cross-validation in density
    estimation. Journal of the american Statistical association, 82(400):1131-1146, 1987.
    [11] Scott, D. W. On optimal and data-based histograms. Biometrika, 66(3):605-610,
    1979.
    [12] Sison, C. P., and Glaz, J. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association,
    90(429):366-369, 1995.
    [13] Levin, B. A representation for multinomial cumulative distribution functions. The
    Annals of Statistics, 1123-1126, 1981.
    [14] May, W. L., and Johnson, W. D. Constructing two-sided simultaneous confidence
    intervals for multinomial proportions for small counts in a large number of cells.
    Journal of statistical software, 5:1-24, 2000.
    [15] De Boor, C. On calculating with B-splines. Journal of Approximation theory,
    6(1):50-62, 1972.
    [16] Kolmogorov, A. N. Sulla determinazione empirica di una legge di distribuzione.
    Giornale dell’Istituto Italiano degli Attuari. Journal of Approximation theory,
    4(1):83-91, 1933.
    [17] Smirnov, N. Table for estimating the goodness of fit of empirical distributions. The
    Annals of Mathematical Statistics, 19(2):279-281, 1948.
    描述: 碩士
    國立政治大學
    統計學系
    111354003
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111354003
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    400301.pdf3703KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈