English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52199253      Online Users : 756
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/152050
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152050


    Title: 自願性氣候變遷資訊揭露之於公司信用風險:輔以機器學習的法說會會議紀錄文本萃取
    The Impact of Voluntary Climate Change Information Disclosure on Corporate Credit Risk: Machine-Learning Assisted Text Mining of Earnings Call Transcripts
    Authors: 吳奕寬
    Wu, Yi-Kuan
    Contributors: 江彌修
    Chiang, Mi-Hsiu
    吳奕寬
    Wu, Yi-Kuan
    Keywords: 信用風險
    氣候情緒
    氣候變遷
    資本成本
    資訊不對稱
    資訊揭露
    機器學習
    Climate Change
    Climate Sentiment
    Cost of Capital
    Credit Risk
    Information Asymmetry
    Information Disclosure
    Machine Learning
    Date: 2024
    Issue Date: 2024-07-01 12:34:08 (UTC+8)
    Abstract: 透過 Sautner et al. (2023)由法說會之自願性氣候變遷資訊輔以機器學習方法 萃取之氣候資訊揭露程度,我們發現公司氣候變遷的資訊揭露與其信用風險呈現 顯著負向關係,且隨著期限結構增加,此關係愈強烈,我們推測氣候資訊的揭露 導致公司資本成本下降,進而使公司信用風險下降。從短期角度來看,公司所在 國家對其短期信用風險有所影響;而在長期,公司本身的特性則成為影響長期信 用風險的關鍵因素。我們更進一步發現,相較於獲利波動較小的公司,獲利波動 較大的公司在揭露氣候資訊後,其短期信用風險更為顯著地下降,這顯示了獲利 不穩定的公司透過揭露氣候資訊,能夠快速減少資訊不對稱性,降低短期信用風 險。最後,氣候情緒指標反映了投資者對公司氣候資訊的樂觀程度,其與各天期 的違約機率呈現負向關聯,顯示出投資人的樂觀情緒有助於降低公司的信用風險。
    Using machine learning methods to extract voluntary climate change information disclosure from earnings calls conducted by Sautner et al. (2023), we find a significant negative relationship between firms' disclosure of climate change information and their credit risk. Moreover, as the term structure increases, this relationship becomes stronger. We speculate that climate change information disclosure leads to a decrease in firms' cost of capital, thereby reducing their credit risk. From a short-term perspective, the country in which the firm operates influences its short-term credit risk. Whereas in the long term, the firm's characteristics become key factors affecting long-term credit risk. Furthermore, we find that compared to firms with smaller performance volatility, firms with larger performance volatility experience a more significant reduction in short-term credit risk after disclosing climate information. This demonstrates that firms with unstable profits can quickly reduce information asymmetry and lower short-term credit risk through climate information disclosure. Finally, the climate sentiment index reflects investors' optimism about firms' climate information, showing a negative correlation with default probabilities across different maturity periods, indicating that investor optimism helps reduce firms' credit risk.
    Reference: Abinzano, I., Gonzalez-Urteaga, A., Muga, L., & Sanchez, S. (2020). Performance of default-risk measures: The sample matters. Journal of Banking & Finance, 120, 105959.
    Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589–609.
    Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17(2), 223–249.
    Beaver, W. H. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4, 71–111.
    Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A Review of Bankruptcy Prediction Studies: 1930 to Present. Journal of Financial Education, 33, 1–42.
    Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637–654.
    Bolton, P., & Kacperczyk, M. (2021). Do investors care about carbon risk? Journal of Financial Economics, 142(2), 517–549.
    Bolton, P., & Kacperczyk, M. T. (2021b). Carbon Disclosure and the Cost of Capital (SSRN Scholarly Paper 3755613).
    Bolton, P., & Kacperczyk, M. T. (2023). Firm Commitments. Columbia Business School Research Paper.
    Botosan, C. A. (1997). Disclosure Level and the Cost of Equity Capital. The Accounting Review, 72(3), 323–349.
    Brüderl, J., & Ludwig, V. (2014). Fixed-Effects Panel Regression (pp. 327–358).
    Campbell, J. L., Chen, H., Dhaliwal, D. S., Lu, H., & Steele, L. B. (2014). The information content of mandatory risk factor disclosures in corporate filings. Review of Accounting Studies, 19(1), 396–455.
    Capasso, G., Gianfrate, G., & Spinelli, M. (2020). Climate change and credit risk. Journal of Cleaner Production, 266, 121634.
    Cathcart, L., Gotthelf, N. M., Uhl, M., & Shi, Y. (2020). News sentiment and sovereign credit risk. European Financial Management, 26(2), 261–287.
    Dhaliwal, D. S., Li, O. Z., Tsang, A., & Yang, Y. G. (2011). Voluntary Nonfinancial Disclosure and the Cost of Equity Capital: The Initiation of Corporate Social Responsibility Reporting. The Accounting Review, 86(1), 59–100.
    Diamond, D. W., & Verrecchia, R. E. (1991). Disclosure, Liquidity, and the Cost of Capital. The Journal of Finance, 46(4), 1325–1359.
    Duan, J.-C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction—A forward intensity approach. Journal of Econometrics, 170(1), 191–209.
    Duffie, D., & Lando, D. (2001). Term Structures of Credit Spreads with Incomplete Accounting Information. Econometrica, 69(3), 633–664.
    Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635–665.
    Dye, R. A. (2001). An evaluation of “essays on disclosure” and the disclosure literature in accounting. Journal of Accounting and Economics, 32(1), 181–235.
    Easton, P. D. (2004). PE Ratios, PEG Ratios, and Estimating the Implied Expected Rate of Return on Equity Capital. The Accounting Review, 79(1), 73–95.
    Engle, R. F., Giglio, S., Kelly, B., Lee, H., & Stroebel, J. (2020). Hedging Climate Change News. The Review of Financial Studies, 33(3), 1184–1216.
    Giglio, S., Kelly, B., & Stroebel, J. (2021). Climate Finance. Annual Review of Financial Economics, 13, 15–36.
    Hassan, T. A., Hollander, S., van Lent, L., & Tahoun, A. (2019). Firm-Level Political Risk: Measurement and Effects*. The Quarterly Journal of Economics, 134(4), 2135–2202.
    He, Y., Tang, Q., & Wang, K. (2013). Carbon disclosure, carbon performance, and cost of capital. China Journal of Accounting Studies, 1(3–4), 190–220.
    Hollander, S., Pronk, M., & Roelofsen, E. (2010). Does Silence Speak? An Empirical Analysis of Disclosure Choices During Conference Calls. Journal of Accounting Research, 48(3), 531–563.
    Huang, H., Zou, Y., Wang, L., Wang, W., & Ren, X. (2023). Impact of carbon information disclosure on corporate financing constraints: Evidence from the Carbon Disclosure Project. Australian Journal of Management, 03128962231180265.
    Jarrow, R. A., & Turnbull, S. M. (1995). Pricing Derivatives on Financial Securities Subject to Credit Risk. The Journal of Finance, 50(1), 53–85.
    Kabir, M. N., Rahman, S., Rahman, M. A., & Anwar, M. (2021). Carbon emissions and default risk: International evidence from firm-level data. Economic Modelling, 103, 105617.
    King, G., Lam, P., & Roberts, M. E. (2017). Computer-Assisted Keyword and Document Set Discovery from Unstructured Text. American Journal of Political Science, 61(4), 971–988.
    Kölbel, J. F., Leippold, M., Rillaerts, J., & Wang, Q. (2024). Ask BERT: How Regulatory Disclosure of Transition and Physical Climate Risks Affects the CDS Term Structure*. Journal of Financial Econometrics, 22(1), 30–69.
    Kothari, S. P., Li, X., & Short, J. E. (2009). The Effect of Disclosures by Management, Analysts, and Business Press on Cost of Capital, Return Volatility, and Analyst Forecasts: A Study Using Content Analysis. The Accounting Review, 84(5), 1639–1670.
    Krueger, P., Sautner, Z., & Starks, L. T. (2020). The Importance of Climate Risks for Institutional Investors. The Review of Financial Studies, 33(3), 1067–1111.
    Liberti, J. M., & Petersen, M. A. (2019). Information: Hard and Soft. The Review of Corporate Finance Studies, 8(1), 1–41.
    Loughran, T., & Mcdonald, B. (2011). When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35–65.
    Matsumoto, D., Pronk, M., & Roelofsen, E. (2011). What Makes Conference Calls Useful? The Information Content of Managers’ Presentations and Analysts’ Discussion Sessions. The Accounting Review, 86(4), 1383–1414.
    Merton, R. C. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates*. The Journal of Finance, 29(2), 449–470.
    Mohamad Sham, N., & Mohamed, A. (2022). Climate Change Sentiment Analysis Using Lexicon, Machine Learning and Hybrid Approaches. Sustainability, 14(8), Article 8.
    Sautner, Z., Van Lent, L., Vilkov, G., & Zhang, R. (2023). Firm-Level Climate Change Exposure. The Journal of Finance, 78(3), 1449–1498.
    Sinkin, C., Wright, C. J., & Burnett, R. D. (2008). Eco-efficiency and firm value. Journal of Accounting and Public Policy, 27(2), 167–176.
    Smales, L. A. (2016). News sentiment and bank credit risk. Journal of Empirical Finance, 38, 37–61.
    Tan, C.-M., Wang, Y.-F., & Lee, C.-D. (2002). The use of bigrams to enhance text categorization. Information Processing and Management: An International Journal, 38(4), 529–546.
    Tetlock, P. C., Saar-Tsechansky, M., & Macskassy, S. (2008). More Than Words: Quantifying Language to Measure Firms’ Fundamentals. The Journal of Finance, 63(3), 1437–1467.
    Verrecchia, R. E. (2001). Essays on disclosure. Journal of Accounting and Economics, 32(1–3), 97–180.
    Yu, F. (2005). Accounting transparency and the term structure of credit spreads. Journal of Financial Economics, 75(1), 53–84.
    Description: 碩士
    國立政治大學
    金融學系
    111352026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111352026
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202601.pdf1572KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback