政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152042
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51215115      Online Users : 874
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152042


    Title: 機器學習模型進行匯率預測之研究
    Two Essays on Exchange Rate Forecasting with Machine Learning Methods
    Authors: 劉韜
    Liu, Tao
    Contributors: 林建秀
    廖四郎

    Lin, Chien-Hsiu
    Liao, Szu-Lang

    劉韜
    Liu, Tao
    Keywords: 匯率預測
    梯度提升決策樹
    極限梯度提升
    經濟理論因子
    單調性約束
    Exchange rate forecasting
    Gradient Boosting Decision Trees
    eXtreme Gradient Boosting
    Economic fundamental variables
    Monotonic constraint
    Date: 2024
    Issue Date: 2024-07-01 12:32:35 (UTC+8)
    Abstract: 本博士論文由兩篇實證研究組成,探討了機器學習模型在多種貨幣匯率預測和交易性能上的應用。
    第一篇論文利用經濟理論導出的變量,包括利率差、通脹率差、貨幣基要因子和非對稱的泰勒法則因子,運用隨機森林、梯度提升決策樹和極限梯度提升模型進行短期匯率預測和投資組合評估。實證結果表明,這些模型在樣本外預測準確度上均優於隨機漫步和線性回歸模型,尤其是梯度提升決策樹表現最佳。而根據模型的預測結果所構建的外匯投資組合顯示,包含了全部四種因子的梯度提升決策樹模型,可實現最高的累積收益率和夏普比率。此外,非對稱的泰勒法則因子,在所有機器學習模型中對匯率預測的過程中均產生正面的影響,是唯一實現該結果的因子。
    第二篇論文在第一篇的基礎上進行了深化與拓展,主要聚焦於性能更強的極限梯度提升模型,旨在探索進一步提升樣本外匯率預測準確度的方法。一方面,透過豐富解釋變數的組成,在經濟理論因子的基礎上,加入了對匯率變化具有整體性影響的因子、外匯交易策略變數,以及前期的匯率變動值;另一方面,針對部分的解釋變數應用單調性約束,這些約束的設定主要基於匯率決定的經濟理論,並根據本文的實證研究結果進行進一步的優化調整。實證研究結果表明,引入更多元的預測因子,並應用單調性約束,確實顯著提高模型的預測準確度。此外,透過將模型預測的結果運用於外匯投資組合進行交易,其交易表現整體而言優於外匯市場中常見的交易策略;我們還發現,加入的非經濟理論因子對所構建的外匯投資組合所產生的正面影響可能超過經濟理論因子。
    This Ph.D. dissertation comprises two essays exploring the use of machine learning models in forecasting various currency exchange rates and evaluating their trading performance.
    The first essay employs variables derived from economic theories, including the interest rate differential, inflation rate differential, monetary fundamental factor, and asymmetric Taylor rule factor. It utilizes random forests, gradient boosting decision trees (GBDT), and extreme gradient boosting (XGBoost) models for short-term exchange rate forecasting and portfolio evaluation. The results suggest that these models surpass random walk and linear regression models in out-of-sample forecast, with the GBDT model showing superior performance. Furthermore, a foreign exchange portfolio constructed based on the model's predictions, integrating all four factors with the GBDT model, achieves the highest cumulative returns and Sharpe ratio. Notably, the asymmetric Taylor rule factor positively influences the forecasting process across all machine learning models, being the only factor to accomplish such a result.
    Building upon the first essay, the second essay delves deeper and expands upon its foundation, primarily focusing on the more potent XGBoost model, aiming to further enhance the accuracy of out-of-sample exchange rate forecasts. It enriches the explanatory variables by adding factors with systematic impacts on exchange rate changes, foreign exchange trading strategy variables, and the prior exchange rate movements, in addition to economic fundamental factors. Moreover, monotonic constraints are applied to some explanatory variables, grounded in economic theories of exchange rate determination and further optimized based on this essay's empirical findings. The results demonstrate that a broader set of predictive factors and the application of monotonic constraints significantly enhance the model's forecasting accuracy. Additionally, by utilizing the model's predictions for trading in a foreign exchange portfolio, its overall trading performance exceeds that of common trading strategies in the market. The inclusion of non-fundamental variables also appears to positively impact the constructed foreign exchange portfolio, surpassing the influence of fundamental variables.
    Reference: References

    Akbari, A., Ng, L., & Solnik, B. (2021). Drivers of Economic and Financial Integration: A Machine Learning Approach. Journal of Empirical Finance, 61, 82-102.
    Alhomsi, M., & Ahmed, H. (2020). Forecasting of Exchange Rate: Autoregressive Models vs. XGBoost.
    Amat, C., Michalski, T., & Stoltz, G. (2018). Fundamentals and Exchange Rate Forecastability with Simple Machine Learning Methods. Journal of International Money and Finance, 88, 1-24.
    Armstrong, W. W., Chu, C., & Thomas, M. M. (1995). Feasibility of Using Adaptive Logic Networks to Predict Compressor Unit Failure (No. PNL-SA-26375; CONF-9503142-). Pacific Northwest National Lab. (PNNL), Richland, WA (United States).
    Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and Momentum Everywhere. The Journal of Finance, 68(3), 929-985.
    Balassa, B. (1964). The Purchasing-Power Parity Doctrine: A Reappraisal. Journal of Political Economy, 72(6), 584-596.
    Ben-Amram, A. M. (2011). Monotonicity Constraints for Termination in the Integer Domain. Logical Methods in Computer Science, 7.
    Benhamou, E., Ohana, J. J., Saltiel, D., & Guez, B. (2021). Planning in Financial Markets in Presence of Spikes: Using Machine Learning GBDT. Université Paris-Dauphine Research Paper, (3862428).
    Booth, A., Gerding, E., & McGroarty, F. (2014). Automated Trading with Performance Weighted Random Forests and Seasonality. Expert Systems with Applications, 41(8), 3651-3661.
    Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
    Burnside, C., Eichenbaum, M., & Rebelo, S. (2011). Carry Trade and Momentum in Currency Markets. Annual Review of Financial Economics, 3(1), 511-535.
    Campa, J. M., & Chang, P. K. (1998). The Forecasting Ability of Correlations Implied in Foreign Exchange Options. Journal of International Money and Finance, 17(6), 855-880.
    Cassel, G. (1925). Money and foreign exchange after 1914. Constable.
    Chang, Y. C., Chang, K. H., & Wu, G. J. (2018). Application of eXtreme Gradient Boosting Trees in the Construction of Credit Risk Assessment Models for Financial Institutions. Applied Soft Computing, 73, 914-920.
    Chen, C. N., & Lin, C. H. (2020). The Sources of Pricing Factors Underlying the Cross-Section of Currency Returns. The Quarterly Review of Economics and Finance, 77, 250-265.
    Chen, T., & Guestrin, C. (2016). Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.
    Cheung, Y. W., Chinn, M. D., & Pascual, A. G. (2005). Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive? Journal of international money and finance, 24(7), 1150-1175.
    Clark, T. E., & West, K. D. (2006). Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis. Journal of Econometrics, 135(1-2), 155-186.
    Dal Bianco, M., Camacho, M., & Quiros, G. P. (2012). Short-Run Forecasting of the Euro-Dollar Exchange Rate with Economic Fundamentals. Journal of International Money and Finance, 31(2), 377-396.
    Della Corte, P., & Tsiakas, I. (2012). Statistical and Economic Methods for Evaluating Exchange Rate Predictability. In: J. James, L. Sarno and I.W. Marsh (Eds.) Handbook of Exchange Rates, 221-263.
    Della Corte, P., Sarno, L., & Tsiakas, I. (2009). An Economic Evaluation of Empirical Exchange Rate Models. The Review of Financial Studies, 22(9), 3491-3530.
    Dey, S., Kumar, Y., Saha, S., & Basak, S. (2016). Forecasting to Classification: Predicting the Direction of Stock Market Price Using Xtreme Gradient Boosting. PESIT South Campus.
    Diebold, F. X., & Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13(3), 253-263.
    Du, W., Tepper, A., & Verdelhan, A. (2018). Deviations from Covered Interest Rate Parity. The Journal of Finance, 73(3), 915-957.
    Engel, C., Mark, N. C., West, K. D., Rogoff, K., & Rossi, B. (2007). Exchange Rate Models Are Not As Bad As You Think [with comments and discussion]. NBER macroeconomics annual, 22, 381-473.
    Faust, J., Rogers, J. H., & Wright, J. H. (2003). Exchange Rate Forecasting: The Errors We’ve Really Made. Journal of International Economics, 60(1), 35-59.
    Filippou, I., Rapach, D., Taylor, M. P., & Zhou, G. (2023). Out-of-Sample Exchange Rate Prediction: A Machine Learning Perspective. Available at SSRN 3455713.
    Fisher, A., Rudin, C., & Dominici, F. (2018). All Models Are Wrong But Many Are Useful: Variable Importance for Black-Box, Proprietary, or Misspecified Prediction Models, Using Model Class Reliance. arXiv preprint arXiv:1801.01489, 237-246.
    Fisher, I. (1896). Appreciation and Interest. New York, McMillan and Co.
    Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 1189-1232.
    Friedman, M. (1968). The Role of Monetary Policy. The American Economic Review, 58(1), 1-17.
    Groen, J. J. (2000). The Monetary Exchange Rate Model as a Long-Run Phenomenon. Journal of International Economics, 52(2), 299-319.
    Hooper, P., & Morton, J. (1982). Fluctuations in the Dollar: A Model of Nominal and Real Exchange Rate Determination. Journal of International Money and Finance, 1, 39-56.
    Islam, S. F. N., Sholahuddin, A., & Abdullah, A. S. (2021). Extreme Gradient Boosting (XGBoost) Method in Making Forecasting Application and Analysis of USD Exchange Rates against Rupiah. In Journal of Physics: Conference Series (Vol. 1722, No. 1, p. 012016). IOP Publishing.
    Keynes, J. M. (1923). A Tract on Monetary Reform. Cosimo Classics.
    Küçük, R. (2023). Forecasting Foreign Exchange Rate with Machine Learning Techniques (Master's thesis, Middle East Technical University).
    Mark, N. C. (2009). Changing Monetary Policy Rules, Learning, and Real Exchange Rate Dynamics. Journal of Money, Credit and Banking, 41(6), 1047-1070.
    Mark, N. C., & Sul, D. (2001). Nominal Exchange Rates and Monetary Fundamentals: Evidence from a Small Post-Bretton Woods Panel. Journal of International Economics, 53(1), 29-52.
    Meese, R. A., Rogoff, K. (1983). Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample? Journal of International Economics, 14, 3–24.
    Menkhoff, L., Sarno, L., Schmeling, M., & Schrimpf, A. (2012). Currency Momentum Strategies. Journal of Financial Economics, 106(3), 660-684.
    Molodtsova, T., & Papell, D. H. (2009). Out-of-Sample Exchange Rate Predictability with Taylor Rule Fundamentals. Journal of International Economics, 77(2), 167-180.
    Nelson, D. M., Pereira, A. C., & De Oliveira, R. A. (2017). Stock Market's Price Movement Prediction with LSTM Neural Networks. International joint conference on neural networks (IJCNN). Piscataway, NJ: IEEE, pp. 1419-1426.
    Okunev, J., & White, D. (2003). Do Momentum-Based Strategies Still Work in Foreign Currency Markets? Journal of Financial and Quantitative Analysis, 38(2), 425-447.
    Qian, H., Wang, B., Yuan, M., Gao, S., & Song, Y. (2022). Financial Distress Prediction Using A Corrected Feature Selection Measure and Gradient Boosted Decision Tree. Expert Systems with Applications, 190, 116202.
    Qin, Q., Wang, Q. G., Li, J., & Ge, S. S. (2013). Linear and Nonlinear Trading Models with Gradient Boosted Random Forests and Application to Singapore Stock Market. Journal of Intelligent Learning Systems and Applications, 5, 1-10.
    Rana, M., Uddin, M. M., & Hoque, M. M. (2019). Effects of Activation Functions and Optimizers on Stock Price Prediction Using LSTM Recurrent Networks. Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence, 354-358.
    Raza, A. (2015). Are Value Strategies Profitable in the Foreign Exchange Market? In 28th Australasian Finance and Banking Conference.
    Ren, Y., Liang, X., & Wang, Q. (2021). Short-Term Exchange Rate Forecasting: A Panel Combination Approach. Journal of International Financial Markets, Institutions and Money, 73, 101367.
    Rogoff, K. (1996). The Purchasing Power Parity Puzzle. Journal of Economic Literature, 34(2), 647-668.
    Rossi, B. (2013). Exchange Rate Predictability. Journal of Economic Literature, 51(4), 1063-1119.
    Samuelson, P. A. (1964). Theoretical Notes on Trade Problems. Review of Economics and Statistics, 46(2): 145–154.
    Schut, F., van Rijn, J. N., & Hoos, H. (2019). Towards Automated Technical Analysis for Foreign Exchange Data. In Workshop on Automating Data Science@ ECML/PKDD.
    Sill, J. (1997). Monotonic Networks. Advances in Neural Information Processing Systems, 10.
    Stockman, A. C. (1980). A Theory of Exchange Rate Determination. Journal of Political Economy, 88(4), 673-698.
    Taylor, J. B. (1993). Discretion versus Policy Rules in Practice. Carnegie-Rochester Conference Series on Public Policy, 39, 195-214. North-Holland.
    Yamaguchi, K., & Templin, J. (2022). A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models. Journal of Classification, 39(1), 24-54.
    Zhang, Y., & Hamori, S. (2020). The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models. Journal of Risk and Financial Management, 13(48), 1-16.
    Description: 博士
    國立政治大學
    金融學系
    107352506
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352506
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    250601.pdf1920KbAdobe PDF2View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback