English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51577777      Online Users : 914
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/151519
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/151519


    Title: 線性耦合系統之解的有界性
    Boundedness of solutions of coupled systems with linear couplings
    Authors: 曾俊霖
    TSENG, CHUN-LIN
    Contributors: 曾睿彬
    Tseng, Jui-Pin
    曾俊霖
    TSENG, CHUN-LIN
    Keywords: 被動系統
    半被動系統
    耦合系統
    有界性
    passive system
    semi-passive system
    coupled system
    boundedness
    Date: 2024
    Issue Date: 2024-06-03 11:48:19 (UTC+8)
    Abstract: 在這篇論文中,我們利用與被動系統和半被動系統相關的理論來討論在線性耦合下耦合系統解的有界性。我們通過稍微放寬([6])中提出之semi-passivity定義的條件來修改其定義,然後建立相應的有界性理論。最後,利用本論文介紹的有界性理論,我們推導出了Lorenz系統、Chen系統、Lü系統、Stuart-Landau系統和線性mass-spring-damper系統解的有界性標準。
    In this thesis, we discuss the boundedness of solutions for coupled systems under linear coupling by utilizing theories related to passive and semi-passive systems. We modify the definition of semi-passivity proposed in ([6]) by slightly relaxing its conditions and then establish the corresponding boundedness theory. Finally, with the boundedness theories introduced in this thesis, we derive the criteria of boundedness of solutions for Lorenz system, Chen system, Lü system, Stuart-Landau system, and linear mass-spring-damper system.
    Reference: [1]A. Y. Pogromsky, Passivity based design of synchronizing systems, International Journal of Bifurcation and Chaos, 8 (1998), pp. 295-319.
    [2]A. Pogromsky, T. Glad and H. Nijmeijer, On diffusion driven oscillations in coupled dynamical systems, International Journal of Bifurcation and Chaos, 9 (1999), pp. 629-644.
    [3]A. Pogromsky and H. Nijmeijer, Cooperative oscillatory behavior of mutually coupled dynamical systems, IEEE Trans. Circuits Syst. I, 48 (2001), pp. 152-162.
    [4]A. Pogromsky, G. Santoboni and H. Nijmeijer, Partial synchronization: from symmetry towards stability, Physica D, 172 (2002), pp. 65-87.
    [5]E. Steur and H. Nijmeijer, Synchronization in networks of diffusively time-delay coupled (semi-)passive systems, IEEE Trans. Circuits Syst. I, 58 (2011), pp. 1358-1371.
    [6]Chih-Lun Chao, Semi-passivity and Synchronization in Linearly Coupled Systems, National Chiao Tung University, (2017), pp. 1-77.
    [7]E. Steur, I. Tyukin and H. Nijmeijer, Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D, 238 (2009), pp. 2119-2128.
    [8]Anes Lazri, Mohamed Maghenem, Elena Panteley and Antonio Loria, Global Uniform Ultimate Boundedness of Semi-Passive Systems Interconnected over Directed Graphs. 2023. hal-04298172.
    [9]I.G. Polushin, D.J. Hill, A.L. Fradkov, Strict quasipassivity and ultimate boundedness for nonlinear control systems, in: Proceedings of the Fourth IFAC Symposium on Nonlinear Control Systems, NOLCOS’98, Enshede, The Netherlands, 1998.
    [10]Xiwei Liu, Tianping Chen, Boundedness and synchronization of y-coupled Lorenz systems with or without controllers, Physica D 237 (2008), pp. 630–639.
    [11]Wen-Xin Qin , Guanrong Chen, On the boundedness of solutions of the Chen system, J. Math. Anal. Appl. 329 (2007) 445–451.
    [12]Chunlai Mu , Fuchen Zhang , Yonglu Shu and Shouming Zhou, On the boundedness of solutions to the Lorenz-like family of chaotic systems, Nonlinear Dyn (2012) 67:987–996.
    [13]Fuchen Zhang , Xiaofeng Liao and Guangyun Zhang, On the global boundedness of the Lü system, Applied Mathematics and Computation 284 (2016) 332–339.
    Description: 碩士
    國立政治大學
    應用數學系
    109751011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109751011
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101101.pdf3411KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback