政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/151244
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113303/144284 (79%)
造訪人次 : 50802795      線上人數 : 760
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/151244
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/151244


    題名: 象徵性資料分析法於電信信令資料的矩陣視覺化與分群
    Matrix Visualization and Clustering of the Mobile Phone Data Based on Symbolic Data Analysis
    作者: 吳漢銘;陳逸瑄;王鴻龍
    Wu, Han-ming;Chen, Yi-hsuan;Wang, Hong-long
    貢獻者: 統計系
    關鍵詞: 資料視覺化;時空資料;軌跡分群;人群移動樣態
    Data visualization;Human mobility patterns;Spatiotemporal data;Trajectory clustering
    日期: 2023-06
    上傳時間: 2024-05-24 11:00:41 (UTC+8)
    摘要: 電信信令資料記錄行動裝置的使用者於某時間點的地理位置資訊,具有空間分佈及非線性移動軌跡等多重特徵。相較於戶籍資料或旅運調查資料,運用電信信令資料的分析結果,可提供更即時的人流資訊。本研究結合矩陣視覺化之技術與象徵性資料分析方法於電信信令資料,針對行動裝置使用者的移動軌跡進行二階段的分析與探索,以了解人群與人群間的時空交互作用與群聚移動關係。我們首先採用動態時間校正法作為使用者間軌跡距離之度量指標,計算出使用者距離矩陣後,以矩陣視覺化的技術呈現分群的結果,初步找出移動模式相似的人群。為了解決大數據計算上的困難,我們應用區間型象徵性資料分析法,將相似人群之經緯度數值資料摘要成區間型經緯度資料,並以二維色階作為區間型經緯度資料矩陣視覺化的依據,呈現出實際地理位置的遠近關係與人群移動範圍之大小。藉由本研究針對電信信令資料所提出的人群移動視覺化分析程序,相信可以有效地分析處理大規模即時或長期時空資料,協助專家更精確的預測人流,了解人群移動特徵及其關聯性,並有助於各場域的應用。
    Mobile phone data consist of the geographic locations of mobile device users at specific times, which can be considered spatiotemporal data. A variety of characteristics are present in these data, including spatial distribution and non-linear movement trajectories. Data from telecommunication signaling can provide more real-time information about human movements than household registration data or travel surveys. In this study, the matrix visualization (MV) and symbolic data analysis (SDA) are integrated and applied to mobile phone data to explore the movement patterns of mobile device users as well as the spatiotemporal interaction of crowds and the cluster movement relationship between them. First, we calculate the distance between the users' trajectories by using dynamic time warping (DTW). Following that, the distance matrix is subjected to clustering algorithms so that similar movement patterns can be presented using the MV technique. Rather than attempting to compute big data as a whole, the numerical longitudes and latitudes of a similar cluster are aggregated to create an interval-valued longitude and latitude. By utilizing a two-dimensional color spectrum, interval-based MV can visually display distance between the geographical location and the range of crowd movements. We believe the proposed method can effectively be applied to analyze and process large-scale real-time and long-term spatiotemporal data. Using these results, the experts are able to predict crowd flow more accurately, understand crowd movement characteristics and their correlation, and contribute to applications in various fields.
    關聯: 中國統計學報, Vol.61, No.2, pp.128-151
    資料類型: article
    顯示於類別:[統計學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML68檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋