政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/150977
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113961/144987 (79%)
造访人次 : 51987680      在线人数 : 513
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/150977


    题名: 應用深度學習於不同時期真實正射影像自動偵測建物變遷
    Applying Deep Learning to Automatically Detect Building Changes from True Orthoimages in Different Periods
    作者: 邱式鴻;許家彰
    Chio, Shih-hong;Hsu, Chia-chang
    贡献者: 地政系
    关键词: 建物辨識;建物變遷;深度學習;數值地表模型;數值高度模型
    Building recognition;Building change detection;Deep learning;Digital surface model;Digital height model
    日期: 2023-12
    上传时间: 2024-04-29 14:18:16 (UTC+8)
    摘要: 本研究於不同時期真實正射影像採用深度學習偵測建物變遷資訊。於第一階段以深度學習MS-FCN模型進行建物辨識,研究加入DSM與DHM探討高程對模型之助益,成果顯示相比僅使用真實正射影像,加入DSM與DHM之高程資訊能提升模型建物辨識能力,其F1-score能達87.16%與87.65%;於第二階段以深度學習U-Net模型執行建物變遷,然而在比較兩期真實正射影像間建物變遷時,可能因兩期真實正射影像有些許的對位誤差,故研究中透過將訓練資料隨機移動,訓練能抵抗對位誤差之深度學習模型,其F1-score約為71.63%,成果顯示應用深度學習搭配高解析度真實正射影像協助建物變遷偵測作業有其可行性。
    The change of urban building is an important factor influencing urban development. It is particularly important for urban planners to efficiently and quickly understand building changes in the urban environment. However, most building monitoring operations still rely heavily on manual image recognition, which is not only time-consuming but also labor-intensive. Therefore, this study uses MS-FCN and U-Net deep learning models to assist in the detection of building change information in the Shezi Island area of Taipei City from true orthoimages in different periods. In the first stage of building recognition using MS-FCN deep learning model, the study added DSM (digital surface model) and DHM (digital height model) to explore the benefits of elevation on the model. The results of the building recognition stage show that adding elevation information from DSM and DHM can improve the model's building recognition ability compared to using only the aerial true orthoimages. The F1-scores achieved by adding DSM and DHM are 87.16% and 87.65%, respectively. In the building change detection stage, the U-Net deep learning model that was trained to resist registration errors and can achieve an F1-score of 71.63%. The results demonstrate the feasibility of using deep learning in combination high-resolution aerial true orthoimages and DHM to assist in building change detection operations.
    關聯: 航測及遙測學刊, Vol.28, No.4, pp.209-226
    数据类型: article
    DOI 連結: https://doi.org/10.6574/JPRS.202312_28(4).0001
    DOI: 10.6574/JPRS.202312_28(4).0001
    显示于类别:[地政學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML106检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈