English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51582806      Online Users : 822
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/150695


    Title: Detecting microsatellite instability in colorectal cancer using Transformer-based colonoscopy image classification and retrieval
    Authors: 羅崇銘
    Lo, Chung-Ming;Jiang, Jeng-Kai;Lin, Chun-Chi
    Contributors: 圖檔所
    Date: 2024-01
    Issue Date: 2024-04-10 16:26:53 (UTC+8)
    Abstract: Colorectal cancer (CRC) is a major global health concern, with microsatellite instability-high (MSI-H) being a defining characteristic of hereditary nonpolyposis colorectal cancer syndrome and affecting 15% of sporadic CRCs. Tumors with MSI-H have unique features and better prognosis compared to MSI-L and microsatellite stable (MSS) tumors. This study proposed establishing a MSI prediction model using more available and low-cost colonoscopy images instead of histopathology. The experiment utilized a database of 427 MSI-H and 1590 MSS colonoscopy images and vision Transformer (ViT) with different feature training approaches to establish the MSI prediction model. The accuracy of combining pre-trained ViT features was 84% with an area under the receiver operating characteristic curve of 0.86, which was better than that of DenseNet201 (80%, 0.80) in the experiment with support vector machine. The content-based image retrieval (CBIR) approach showed that ViT features can obtain a mean average precision of 0.81 compared to 0.79 of DenseNet201. ViT reduced the issues that occur in convolutional neural networks, including limited receptive field and gradient disappearance, and may be better at interpreting diagnostic information around tumors and surrounding tissues. By using CBIR, the presentation of similar images with the same MSI status would provide more convincing deep learning suggestions for clinical use.
    Relation: PLOS One, Vol.19, No.1, e0292277
    Data Type: article
    DOI 連結: https://doi.org/10.1371/journal.pone.0292277
    DOI: 10.1371/journal.pone.0292277
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML102View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback