Reference: | [1] E. Mansimov, E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Generating images from captions with attention,” arXiv preprint arXiv:1511.02793, 2015. [2] P. Wolfendale, Object-oriented philosophy: The noumenon’s new clothes. MIT Press, 2019, vol. 1. [3] M. Coeckelbergh, “Can machines create art?” Philosophy & Technology, vol. 30, no. 3, pp. 285–303, 2017. [4] J.-W. Hong and N. M. Curran, “Artificial intelligence, artists, and art: attitudes toward artwork produced by humans vs. artificial intelligence,” ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 15, no. 2s, pp. 1–16, 2019. [5] E. S. Mikalonytė and M. Kneer, “Can artificial intelligence make art?: Folk intuitions as to whether ai-driven robots can be viewed as artists and produce art,” ACM Transactions on Human-Robot Interaction (THRI), vol. 11, no. 4, pp. 1–19, 2022. [6] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” pp. 8821–8831, 2021. [7] G. M. Edelman, Neural Darwinism: The theory of neuronal group selection. Basic books, 1987. [8] G. M. Edelman and G. Tononi, A universe of consciousness: How matter becomes imagination. Hachette UK, 2008. [9] 傑拉爾德·M·埃德爾曼、朱利歐·托諾尼, 意識的宇宙:物質如何轉變 為精神(重譯版), 2019. [10] G. Tononi, “An information integration theory of consciousness,” BMC neuroscience, vol. 5, pp. 1–22, 2004. [11] A. Haun and G. Tononi, “Why does space feel the way it does? towards a principled account of spatial experience,” Entropy, vol. 21, no. 12, p. 1160, 2019. [12] B. J. Baars, A cognitive theory of consciousness. Cambridge University Press, 1993. [13] ——, “Global workspace theory of consciousness: toward a cognitive neuroscience of human experience,” Progress in brain research, vol. 150, pp. 45–53, 2005. [14] S. Dehaene, M. Kerszberg, and J.-P. Changeux, “A neuronal model of a global workspace in effortful cognitive tasks,” Proceedings of the national Academy of Sciences, vol. 95, no. 24, pp. 14 529–14 534, 1998. [15] R. VanRullen and R. Kanai, “Deep learning and the global workspace theory,” Trends in Neurosciences, vol. 44, no. 9, pp. 692–704, 2021. [16] N. Block, “How many concepts of consciousness?” Behavioral and brain sciences, vol. 18, no. 2, pp. 272–287, 1995. [17] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption generation with visual attention,” pp. 2048–2057, 2015. [18] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption generator,” pp. 3156–3164, 2015. [19] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw: A recurrent neural network for image generation,” pp. 1462–1471, 2015. [20] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neural networks,” 2015. [21] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv preprint arXiv:1508.06576, 2015. [22] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” pp. 2223–2232, 2017. [23] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” pp. 4401–4410, 2019. [24] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020. [25] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” pp. 8748–8763, 2021. [26] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” pp. 10 684–10 695, 2022. [27] L. Wittgenstein and R. Monk, Tractatus logico-philosophicus. Routledge, 2013. [28] M. O’Sullivan, An Analysis of Ludwig Wittgenstein’s Philosophical Investigations. Macat Library, 2017. [29] T. Nagel, “What is it like to be a bat?” pp. 159–168, 1980. [30] G. Morrot, F. Brochet, and D. Dubourdieu, “The color of odors,” Brain and language, vol. 79, no. 2, pp. 309–320, 2001. [31] G. Harman, Object-oriented ontology: A new theory of everything. Penguin UK, 2018. [32] E. Husserl, Cartesian meditations: An introduction to phenomenology. Springer Science & Business Media, 2013. [33] A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova, J. Huang, and J. Hays, “Webgazer: Scalable webcam eye tracking using user interactions,” in Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI). AAAI, 2016, pp. 3839–3845. [34] 大學入學考試中心研究發展處, “高中英文參考詞彙表,” https://www.ceec. edu.tw/SourceUse/ce37/ce37.htm. [35] K. Rayner, “Eye movements in reading and information processing: 20 years of research.” Psychological bulletin, vol. 124, no. 3, p. 372, 1998. [36] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. [37] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in International conference on machine learning. PMLR, 2014, pp. 1188–1196. |