Reference: | 1. Aggarwal, K., Kirchmeyer, M., Yadav, P., Keerthi, S., and Gallinari, P. (2020). Benchmarking Regression Methods: A Comparison with CGAN. arXiv preprint arXiv:1905.12868.
2. Antipov, E.A. and Pokryshevskaya, E.B. (2012). Mass Appraisal of Residential Apartments: An Application of Random Forest for Valuation and A CART-Based Approach for Model Diagnostics. Expert Systems with Applications, 39(2), 1772-1778.
3. Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Gan. arXiv preprint arXiv:1701.07875, 2(3), 4.
4. Aycock, S.A. (2000). The Impact of Fairness, Reference Point, and Human Decision Processing on Negotiation. Journal of Financial Service professionals, 54(2), 76-81.
5. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
6. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees.
7. Chen, T.Q. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (785-794).
8. Chen, X., Wei, L., and Xu, J. (2017). House Price Prediction Using LSTM. arXiv preprint arXiv:1709.08432.
9. Diaz III, J. (1990). The Process of Selecting Comparable Sales. The Appraisal Journal 58(4), 533-540.
10. Diqi, M., Hiswati, M.E., and Nur, A.S. (2022). StockGAN: Robust Stock Price Prediction Using GAN Algorithm. International Journal of Information Technology, 14(5), 2309–2315.
11. Do, A.Q. and Grudnitski, G. (1992). A Neural Network Approach to Residential Property Appraisal, The Real Estate Appraiser. 58(3), 38-45.
12. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 1-26.
13. Embaye, W.T., Zereyesus, Y.A., and Chen, B. (2021). Predicting the Rental Value of Houses in Household Surveys in Tanzania, Uganda And Malawi: Evaluations of Hedonic Pricing and Machine Learning Approaches. Public Library of Science, 16(2), 1-20.
14. Frew, J. and Jud, G.D. (2003). Estimating the Value of Apartment Buildings. Journal of Real Estate Research, 25(1), 77-86.
15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. Advances in neural information processing systems, 27.
16. Goodman, A.C. and Thibodeau, T. (2003). Housing Market Segmentation and Hedonic Prediction Accuracy. Journal of Housing Economics, 12(3), 181-201.
17. Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2015). A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. arXiv preprint arXiv:2001.06937.
18. Harrison, D. and Rubinfeld, D.L. (1978). Hedonic Housing Prices and the Demand for Clean Air. Journal of Environmental Economics and Management, 5(1), 81-102.
19. Ho, W.K.O., Tang, B., and Wong S.W. (2021). Predicting Property Prices with Machine Learning Algorithms. Journal of Property Research, 38(1), 48-70.
20. Hsieh, C.F. and Lin, T.C. (2021). Housing Price Prediction by Using Generative Adversarial Networks. In 2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 49-53.
21. Huang, H., Yu, P.S., and Wang, C. (2018). An Introduction to Image Synthesis with Generative Adversarial Nets. arXiv preprint arXiv:1803.04469.
22. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.
23. Lin, H., Chen, C., Huang, G., and Jafari, A. (2021). Stock Price Prediction Using Generative Adversarial Networks. Journal of Computer Science, 17(3), 188-196.
24. Liu, B., Lv, J., Fan, X., Luo, J., and Zou, T. (2022). Application of an Improved DCGAN for Image Generation. Mobile Information Systems, 2022.
25. Liu, Z., Song, A., Sabar, N., Qin, K., Izuhara, T. (2023). Evolution Enhancing Property Price Prediction by Generating Artificial Transaction Data. In Proceedings of the Conference on Genetic and Evolutionary Computation, 739-742.
26. Lusht, K.M. (1996). A Comparison of Prices Brought by English Auctions and Private Negotiations. Journal of Real Estate Economics, 24(4), 517-530.
27. Mackmin, D. (1985). Is There a Residential Valuer in The House? Journal of Valuation, 3(4), 384-390.
28. Maliene, V. (2011). Specialized Property Valuation: Multiple Criteria Decision Analysis. Journal of Retail & Leisure Property, 9, 443–450.
29. Mirza, M. and Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784.
30. Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., and French, N. (2003). Real Estate Appraisal: A Review of Valuation Methods. Journal of Property Investment and Finance, 21(4), 383-401.
31. Park, B. and Bae, J.K. (2015). Using Machine Learning Algorithms for Housing Price Prediction: The Case of Fairtax County, Virginia Housing Data. Expert Systems with Applications, 42(6), 2928-2934.
32. Rico-Juan, J.R. and de La Paz, P.T. (2021). Machine Learning with Explainability or Spatial Hedonics Tools? An Analysis of The Asking Prices in The Housing Market in Alicante, Spain. Expert Systems with Applications, 171, 114590.
33. Romero, R.A.C. (2017). Generative Adversarial Network for Stock Market Price Prediction. CD230: Deep Learning, Stanford University, 5.
34. Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy, 82(1), 34-55.
35. Rosenblatt, F. (1957). The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain. Psychological Review, 65(6), 386-408.
36. Soltani, A., Heydari, M., Aghaei, F., and Pettit, C.J. (2022). Housing Price Prediction Incorporating Spatio-Temporal Dependency into Machine Learning Algorithms. Cities, 131(4), 103941.
37. Tanaka, F.H.K.D.S. and Aranha, C. (2019). Data Augmentation using GANs. arXiv preprint arXiv:1904.0913.
38. Tay, D.P.H. and Ho, D.K.H. (1991). Artificial Intelligence and The Mass Appraisal of Residential Apartments. Journal of Property Valuation and Investment, 10, 525 -539.
39. Xu, X. and Zhang, Y. (2021). House Price Forecasting with Neural Networks. Intelligent Systems with Applications, 12, 200052.
40. Yilmaz, B. (2023). Housing GANs: Deep Generation of Housing Market Data. Computational Economics, 1-16.
41. Yiu, C.Y., Tang, B.S., Chiang, Y.H., and Choy, L.H.T. (2006). Alternative Theories of Appraisal Bias. Journal of Real Estate Literature, 14(3), 321-344.
42. Yu, L., Jiao, C., Xin, H., Wang, Y., and Wang, K. (2018). Prediction on Housing Price Based on Deep Learning. International Journal of Computer and Information Engineering, 12(2), 90-99.
43. Zhang, B., Sui, W., Huang, Z., Qi, M., and Li, M. (2023). Normalizing Flow based Uncertainty Estimation for Deep Regression Analysis. Available at SSRN 4698811.
44. Zhang, K., Zhong, G., Dong, J., Wang, S. and Wang, Y. (2018). Stock Market Prediction Based on Generative Adversarial Network. Procedia Computer Science 147, 400-406.
45. Zheng, T., Song. L., Wang, J., Teng, W., Xu, X., and Ma, C. (2020). Data Synthesis Using Dual Discriminator Conditional Generative Adversarial Networks for Imbalanced Fault Diagnosis of Rolling Bearings. Measurement, 158(1), 107741. |