政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/150165
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51117656      Online Users : 857
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/150165


    Title: 糖質體學資料探勘與自動化分析
    Data Mining and Automated Analysis in Glycomics
    Authors: 曾偉綱
    Kang, Tseng Wei
    Contributors: 張家銘
    chang, jia-ming
    曾偉綱
    Tseng Wei Kang
    Keywords: 人工智慧
    資料探勘
    質譜儀
    機器學習
    分子結構預測
    Artificial Intelligence
    Data Mining
    Mass Spectrometry
    Machine Learning
    Molecular Structure Prediction
    Date: 2024
    Issue Date: 2024-03-01 13:41:06 (UTC+8)
    Abstract: 本研究致力於透過液相層析串聯質譜(LC-MS/MS)自動識別與分析醣鏈結構。應用資料探勘和機器學習技術,我們分析了斑馬魚腦與卵巢組織的數據集。相較於人工分析,我們的方法顯著提高了從龐大數據中定位樣本的效率,證明了其可行性。特別是,我們的方法大幅縮短了生物學家進行分析的時間,將原本需要30小時的任務縮減至幾秒內完成。這一成就強調了我們方法提升效率的潛力。最終,我們驗證了隨機森林模型在此問題上為各類別提供了最合適的模型,並具有跨組織樣本識別能力。它能有效識別訓練數據中未出現的組織中的醣鏈,證明了這一工具的實用應用性。總之,這項研究為深入理解和分析質譜儀產生的醣數據提供了一種快速且實用的工具,為未來研究的應用和方法的改進開辟了新的途徑。
    This study focused on automatically identifying and analyzing glycan structures based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). By applying data mining and machine learning techniques, we analyzed the zebrafish Brain and Ovary tissue datasets. Our methods enhanced the efficiency of targeting samples from vast data compared to human efforts, thus demonstrating their viability.

    Specifically, our approach has significantly expedited the time-consuming analysis process for a biologist, reducing tasks that traditionally took 30 hours to mere seconds. This achievement underscores the efficiency-enhancing potential of our method.
    Ultimately, we have validated that the Random Forest model in this problem offers a generally most suitable model for various categories and possesses cross-tissue sample identification capabilities. It can effectively recognize glycans in tissues not present in the training data, proving the practical applicability of this tool.
    In summary, the research provides a rapid and pragmatic tool for a deeper understanding and analysis of glycan data produced by mass spectrometers, promising new avenues for future research application and refinement of this method.
    Reference: 1. Interpreting Mass Spectra Retrieved January 2, 2024, from
    Spectrahttps://chem.libretexts.org/Courses/Athabasca_University/Chemistry_350
    %3A_Organic_Chemistry_I/12%3A_Structure_Determination-
    _Mass_Spectrometry_and_Infrared_Spectroscopy/12.02%3A_Interpreting_Mass_Spectra
    2. Urban, J., Jin, C., Thomsson, K. A., Karlsson, N. G., Ives, C. M., Fadda, E., & Bojar, D. (2023). Predicting glycan structure from tandem mass spectrometry via deep learning. bioRxiv. https://doi.org/10.1101/2023.06.13.544793
    3. Burkholz, R., Quackenbush, J., & Bojar, D. (2021). Using graph convolutional neural networks to learn a representation for glycans. Elsevier, Volume 35, Issue
    11, 15 June 2021, 109251.
    4. weka.classifiers.rules OneR Retrieved July 26, 2023, from
    https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/OneR.html
    5. Glycoworkbench. (n.d.). Retrieved July 26, 2023, from
    https://code.google.com/archive/p/glycoworkbench/
    6. Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. Journal of Proteome Research. 2008 Apr;7(4):1650-9. doi:
    10.1021/pr7008252. Epub 2008 Mar 1. PMID: 18311910.
    https://pubmed.ncbi.nlm.nih.gov/18311910/
    7. Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., &
    Seeberger, P. H. (2015). Essentials of Glycobiology. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104780/
    Description: 碩士
    國立政治大學
    資訊科學系
    108753122
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108753122
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File SizeFormat
    312201.pdf1890KbAdobe PDF4View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback