English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51587180      Online Users : 943
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/149680


    Title: 日本流行雜誌封面人物偏好分析
    Analysis of the preference of Japanese popular magazine cover character
    Authors: 楊宇晴
    Yang, Yu-Ching
    Contributors: 羅崇銘
    Lo, Chung-Ming
    楊宇晴
    Yang, Yu-Ching
    Keywords: 日本流行雜誌
    封面人物
    亞馬遜人臉辨識系統
    銷售量預測
    機器學習
    深度學習
    Japanese fashion magazines
    Cover character
    AWS Rekognition
    Sales prediction
    Machine learning
    Deep learning
    Date: 2024
    Issue Date: 2024-02-01 12:52:53 (UTC+8)
    Abstract: 日本的流行雜誌於1970年代發展逐漸趨近於成熟,現今與日本人的日常生活密不可分。而流行雜誌的封面人物正是代表該本雜誌的品味以及該期出版的主題重心,更具有向潛在讀者介紹內容或宣傳內頁故事的功能。另外更能反映出日本當代社會對於特定人物或潮流的關注度和興趣,也可以呈現出對某些特定議題或價值觀的強調。
    本研究搜集80本不同類型的雜誌,總共包含5,604張封面影像。透過分析雜誌本身的6個屬性特徵,以及運用AWS Rekognition技術對封面人物的10個臉部特徵進行分析。研究結果顯示,MAGAZINE HOUSE是高銷售雜誌的主要出版社,讀者偏好月刊發行頻率,風格類型以時尚和生活方式雜誌為主,性別類型偏好女性類別雜誌,年齡類型則偏好青壯年、青少年和中年雜誌。在封面人物的呈現上,讀者偏好展現歡樂和驚訝的表情,更喜歡微笑、無眼鏡&墨鏡、無遮擋的封面人物。此外,本研究亦透過機器學習模型預測銷售量,結果顯示除了雜誌本身的屬性外,封面人物的外貌和表情等特徵都能對銷售表現產生影響。並在使用全部16個屬性特徵進行預測時,隨機森林分類器的準確率達到96.34%。建議雜誌出版商持續優化封面設計,確保充分利用這些關鍵因素,提升雜誌的吸引力,取得更好的銷售成績。
    The development of popular magazines in Japan gradually matured in the 1970s and is now inseparable from the daily lives of the Japanese. The cover characters of these magazines represent the taste of the publication and the thematic focus of each issue, serving as a means to introduce content or promote inner stories to potential readers. Moreover, they reflect the contemporary Japanese society's attention and interest in specific figures or trends, emphasizing certain issues or values.
    This research collected 80 magazines of different genres, totaling 5,604 cover images. Through analyzing six attributes of the magazines and utilizing AWS Rekognition technology to analyze ten facial features of the cover characters, the research results indicate that MAGAZINE HOUSE is the main publisher of high-selling magazines. Readers prefer monthly publication frequency. The style type is mainly fashion and lifestyle magazines. The gender type prefers women's magazines. The age type prefers young adults, teenagers and middle-aged magazines. In terms of cover characters, readers prefer expressions of happy and surprise, and they prefer cover characters with smiles, no glasses & sunglasses, and no obstruction.
    Furthermore, the research used a machine learning model to predict sales, demonstrating that besides magazine attributes, the appearance and expressions of cover characters significantly impact sales performance. When using all 16 attribute features for prediction, the random forest classifier achieved an accuracy rate of 96.34%. The research recommends continuous optimization of cover designs by magazine publishers, ensuring the effective utilization of these key factors to enhance attractiveness and achieve better sales outcomes.
    Reference: Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
    Adjabi, I., Ouahabi, A., Benzaoui, A., & Taleb-Ahmed, A. (2020). Past, present, and future of face recognition: A review. Electronics, 9(8), 1188.
    Ali, D., Milleville, K., Verstockt, S., Van de Weghe, N., Chambers, S., & Birkholz, J. M. (2023). Computer vision and machine learning approaches for metadata enrichment to improve searchability of historical newspaper collections. Journal of Documentation, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JD-01-2022-0029
    Ali, W., Tian, W., Din, S. U., Iradukunda, D., & Khan, A. A. (2021). Classical and modern face recognition approaches: a complete review. Multimedia Tools and Applications, 80(3), 4825-4880. https://doi.org/10.1007/s11042-020-09850-1
    Aoyagi, H. (2000). Pop idols and the Asian identity. Japan pop, 309-326.
    Aslam, M. M. (2006). Are you selling the right colour? A cross‐cultural review of colour as a marketing cue. Journal of marketing communications, 12(1), 15-30.
    Assmann, S. (2003). Japanese women's magazines: inspiration and commodity. electronic journal of contemporary japanese studies.
    Bai, J., Li, Y., Li, J., Yang, X., Jiang, Y., & Xia, S.-T. (2022). Multinomial random forest. Pattern Recognition, 122, 108331. https://doi.org/https://doi.org/10.1016/j.patcog.2021.108331
    Bailey, L. R., & Seock, Y. K. (2010). The relationships of fashion leadership, fashion magazine content and loyalty tendency. Journal of Fashion Marketing and Management: An International Journal, 14(1), 39-57. https://doi.org/10.1108/13612021011025429
    Bates, S. (2011). Public intellectuals on Time's covers. Journalism History, 37(1), 39-50.
    Bi, Y., Xue, B., Mesejo, P., Cagnoni, S., & Zhang, M. (2023). A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends. IEEE Transactions on Evolutionary Computation, 27(1), 5-25. https://doi.org/10.1109/TEVC.2022.3220747
    Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
    Chilson, N. A., & Barkley, T. D. (2021). The Two Faces of Facial Recognition Technology. IEEE Technology and Society Magazine, 40(4), 87-100. https://doi.org/10.1109/MTS.2021.3123752
    Choo, K. (2013). Playing the global game: Japan brand and globalization. In Asian Popular Culture (pp. 213-229). Routledge.
    Coşkun, M., Uçar, A., Ö, Y., & Demir, Y. (2017, 15-17 Nov. 2017). Face recognition based on convolutional neural network. 2017 International Conference on Modern Electrical and Energy Systems (MEES),
    Courtney, A. E., & Whipple, T. W. (1983). Sex stereotyping in advertising. Lexington, Mass.: Lexington Books.
    Dentsu. (2022). Advertising Expenditures in Japan 2021. https://www.dentsu.co.jp/en/knowledgeanddata/ad_expenditures/pdf/expenditures_2021.pdf
    digital-zasshi. (2022). Ebiure. digital-zasshi. https://www.digital-zasshi.jp/apparel-dictionary/ebiure/
    Dodd, D. K., Harcar, V., Foerch, B. J., & Anderson, H. T. (1989). Face-ism and facial expressions of women in magazine photos. The Psychological Record, 39(3), 325-331.
    Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
    Duke, N. K., Ward, A. E., & Pearson, P. D. (2021). The Science of Reading Comprehension Instruction. The Reading Teacher, 74(6), 663-672. https://doi.org/https://doi.org/10.1002/trtr.1993
    Ekman, P., Friesen, W. V., & Ellsworth, P. (2013). Emotion in the human face: Guidelines for research and an integration of findings (Vol. 11). Elsevier.
    Ekmekci, P. E., & Arda, B. (2020). History of Artificial Intelligence. In P. E. Ekmekci & B. Arda (Eds.), Artificial Intelligence and Bioethics (pp. 1-15). Springer International Publishing. https://doi.org/10.1007/978-3-030-52448-7_1
    Elger, P., & Shanaghy, E. (2020). AI as a Service: Serverless machine learning with AWS. Manning Publications.
    Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: from early developments to recent advancements. Systems Science & Control Engineering: An Open Access Journal, 2(1), 602-609.
    Ford, M. (2015). Rise of the Robots: Technology and the Threat of a Jobless Future. Basic Books.
    Fürsich, E. (2010). Media and the representation of Others. International social science journal, 61(199), 113-130.
    Ganbold, S. (2023). Luxury goods market in the Asia-Pacific region - statistics & facts. Statista. https://www.statista.com/topics/8454/luxury-goods-market-in-the-asia-pacific-region/#topicOverview
    Goffman, E. (1979). Gender advertisements.
    Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
    Hall, P. C., West, J. H., & McIntyre, E. (2012). Female Self-Sexualization in MySpace.com Personal Profile Photographs. Sexuality & Culture, 16(1), 1-16. https://doi.org/10.1007/s12119-011-9095-0
    Han, T.-I., & Rudd, N. A. (2015). Images of beauty: Sex, race, age, and occupational analysis of fashion magazine covers. Journal of Global Fashion Marketing, 6(1), 47-59. https://doi.org/10.1080/20932685.2014.926131
    Held, G. (2005). Magazine covers–a multimodal pretext-genre.
    Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69-76. https://doi.org/10.1007/s12178-020-09600-8
    Holden, T. (2012). Hyper-gendered discourse: how Japanese fashion magazines construct gender identity. Derecho a Comunicar, 4, 232-266.
    Holmes, T. (2007). MAPPING THE MAGAZINE. Journalism Studies, 8(4), 510-521. https://doi.org/10.1080/14616700701411714
    Holthus, B. (2009). Paarbeziehungen in japanischen Frauenzeitschriften seit 1970: Medien und Geschlecht in Japan. Edwin Mellen Press.
    Hyndman, S. (2016). Why Fonts Matter: a multisensory analysis of typography and its influence from graphic designer and academic Sarah Hyndman. Random House.
    Institute, N. B. C. R. (2021). Media use time-use survey [https://www.nhk.or.jp/bunken/yoron-jikan/media/]. N. B. C. R. Institute.
    Iwabuchi, K. (2002). Recentering globalization. In Recentering Globalization. Duke University Press. https://doi.org/https://doi.org/10.1515/9780822384083
    Japan’s influence on American youth pushes street fashion to new heights. (2004). The label lab: Weekly reports on the latest global youth, trends, news, facts, and figures. . http://www.labelnetworks.com
    Jha, S., Arora, M., Sharma, Y., Anand, A., & Sharma, D. (2022, 26-27 May 2022). Comparative Analysis of Cloud Computing Based Face Recognition Services. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON),
    JMPA. (2023). Number of printed certificates. Japan Magazine Publishers Association. https://www.j-magazine.or.jp/user/printed2/index
    Johnson, S., & de Lozano, C. A. (2002). The art and science of magazine cover research. Journal of Magazine & New Media Research, 5(1), 1-10.
    Kawai, R. (2006). The Current State of the Japanese Magazine Publishing. The Journal of Communication Studies, 24, 117-123. https://cir.nii.ac.jp/crid/1050282812463947264
    Kawamura, Y. (2016). Japanese Teens as Producers of Street Fashion. Current Sociology, 54(5), 784-801. https://doi.org/10.1177/0011392106066816
    khan, M., Raza Naqvi, S., Ullah, Z., Ali Ammar Taqvi, S., Nouman Aslam Khan, M., Farooq, W., Taqi Mehran, M., Juchelková, D., & Štěpanec, L. (2023). Applications of machine learning in thermochemical conversion of biomass-A review. Fuel, 332, 126055. https://doi.org/https://doi.org/10.1016/j.fuel.2022.126055
    Kidd, D. (2017). Popular culture. Oxford University Press. https://www.oxfordbibliographies.com/view/document/obo-9780199756384/obo-9780199756384-0193.xml
    Koga, R. (2005). Evolution of Fashion Magazines: From the Early Days to the Present.
    Kogler, E. (2007). Japanese Luxury Consumption: Enjoy the freedom but follow the rules.
    Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the artificial neural networks. Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 1-18.
    Kress, G., & Van Leeuwen, T. (2020). Reading images: The grammar of visual design. Routledge.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
    Lo, C.-M., Hung, P.-H., & Lin, D.-T. (2021). Rapid Assessment of Acute Ischemic Stroke by Computed Tomography Using Deep Convolutional Neural Networks. Journal of Digital Imaging, 34(3), 637-646. https://doi.org/10.1007/s10278-021-00457-y
    Lo, C.-M., & Lai, K.-L. (2023). Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities. Computer methods and programs in biomedicine, 237, 107575.
    Lo, C.-M., Yang, Y.-W., Lin, J.-K., Lin, T.-C., Chen, W.-S., Yang, S.-H., Chang, S.-C., Wang, H.-S., Lan, Y.-T., Lin, H.-H., Huang, S.-C., Cheng, H.-H., Jiang, J.-K., & Lin, C.-C. (2023). Modeling the survival of colorectal cancer patients based on colonoscopic features in a feature ensemble vision transformer. Computerized Medical Imaging and Graphics, 107, 102242. https://doi.org/https://doi.org/10.1016/j.compmedimag.2023.102242
    Luo, X. (2008). WOMEN'S FASHION MAGAZINES IN JAPAN: Women vs. Women's Fashion Magazines in Relation to Self-image Creation and Consumption.
    MacQueen, J. (1967). Classification and analysis of multivariate observations. 5th Berkeley Symp. Math. Statist. Probability,
    Malakouti, S. M. (2023). Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation. Case Studies in Chemical and Environmental Engineering, 8, 100351. https://doi.org/https://doi.org/10.1016/j.cscee.2023.100351
    Mane, S., & Shah, G. (2019, 2019//). Facial Recognition, Expression Recognition, and Gender Identification. Data Management, Analytics and Innovation, Singapore.
    Martikainen, J., & Sakki, I. (2021). How newspaper images position different groups of people in relation to the COVID-19 pandemic: A social representations approach. Journal of Community & Applied Social Psychology, 31(4), 465-494. https://doi.org/https://doi.org/10.1002/casp.2515
    Merriam-Webster. (2024). Magazine. In Merriam-Webster.com dictionary. In https://www.merriam-webster.com/dictionary/magazine
    Millard, J. E., & Grant, P. R. (2006). The stereotypes of Black and White women in fashion magazine photographs: The pose of the model and the impression she creates. Sex Roles, 54(9), 659-673.
    Nakano, K. (2020). Modes of the COVID Era: Part 2 | Modes and Society. JBpress autograph. https://jbpress.ismedia.jp/articles/-/60834
    Nalepa, J., & Kawulok, M. (2019). Selecting training sets for support vector machines: a review. Artificial Intelligence Review, 52(2), 857-900.
    Niikura, T. (2013). Perception Framework of Brand Identity: The Influence of Exclusive Models and Styling on the Image of Women's Magazine Brands. Journal of business administration Kwansei Gakuin University., 60(4), 159-179.
    Panich, T., Lertkornkitja, A., Pariwongkhuntorn, N., & Phonkaew, S. (2024). Perceived Risk and Marketing Mix Influencing Generation Y Fashion Clothes Purchasing Decisions via Online Social Media [Article]. WSEAS Transactions on Business and Economics, 21, 212-222, Article 19. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177852534&partnerID=40&md5=10b55d777bcd3a443333ac9204fb3221
    Pappas, S. (2011). Despite aging readership, magazines feature more young women. NBC News Digital. http://www.nbcnews.com/health/health-news/despite-aging-readership-magazines-feature-more-young-women-flna1C9458683
    Peters, K., Chen, Y., Kaplan, A. M., Ognibeni, B., & Pauwels, K. (2013). Social Media Metrics — A Framework and Guidelines for Managing Social Media. Journal of Interactive Marketing, 27(4), 281-298. https://doi.org/10.1016/j.intmar.2013.09.007
    Portillo Juan, N., & Negro Valdecantos, V. (2022). Review of the application of Artificial Neural Networks in ocean engineering. Ocean Engineering, 259, 111947. https://doi.org/https://doi.org/10.1016/j.oceaneng.2022.111947
    Pranav, E., Kamal, S., Chandran, C. S., & Supriya, M. (2020). Facial emotion recognition using deep convolutional neural network. 2020 6th International conference on advanced computing and communication Systems (ICACCS),
    Ricciardelli, R., Clow, K. A., & White, P. (2010). Investigating Hegemonic Masculinity: Portrayals of Masculinity in Men’s Lifestyle Magazines. Sex Roles, 63(1), 64-78. https://doi.org/10.1007/s11199-010-9764-8
    Ryosuke, K. (2005). The Current State of Japanese Magazine Publishing. Research Publishing, 35(0), 103-110. https://doi.org/10.24756/jshuppan.35.0_103
    Saladin, R. (2019). Male Magazines on the Rise—Development of the Japanese Magazine Market. In Young Men and Masculinities in Japanese Media (pp. 103-135). Springer.
    Shaga, V., Gebregziabher, H., & Chintal, P. (2023, 2023//). Performance Prediction Using Support Vector Machine Kernel Functions and Course Feedback Survey Data. IOT with Smart Systems, Singapore.
    Shioiri, T., Someya, T., Helmeste, D., & Tang, S. W. (1999). Misinterpretation of facial expression: A cross‐cultural study. Psychiatry and clinical neurosciences, 53(1), 45-50.
    Shuppankagaku. (2022). Annual Report of the Publication Market.
    Siddharth, L., Blessing, L., & Luo, J. (2022). Natural language processing in-and-for design research. Design Science, 8, e21, Article e21. https://doi.org/10.1017/dsj.2022.16
    Statista. (2022a). Newspapers & Magazines [Advertising & Media Markets]. https://www.statista.com/
    Statista. (2022b). Publishing media services usage in Japan in 2022. https://www-statista-com.autorpa.lib.nccu.edu.tw/forecasts/1001073/publishing-media-services-usage-in-japan
    Sun, Z., & Tzimiropoulos, G. (2022). Part-based Face Recognition with Vision Transformers. British Machine Vision Conference,
    Sunitha, G., Geetha, K., Neelakandan, S., Pundir, A. K. S., Hemalatha, S., & Kumar, V. (2022). Intelligent deep learning based ethnicity recognition and classification using facial images. Image and Vision Computing, 121, 104404. https://doi.org/https://doi.org/10.1016/j.imavis.2022.104404
    Sutopo, A. H. (2023). Mastering the Art of Book Design: A Comprehensive Guide. Topazart.
    Tseronis, A. (2015). Multimodal argumentation in news magazine covers: A case study of front covers putting Greece on the spot of the European economic crisis. Discourse, Context & Media, 7, 18-27. https://doi.org/10.1016/j.dcm.2014.12.003
    Tsichla, E. (2020). The Changing Roles of Gender in Advertising: Past, Present, and Future. Contemporary Southeastern Europe, 7(2), 28-44.
    Van Der Stigchel, S. (2019). How attention works: Finding your way in a world full of distraction. MIT Press.
    Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media.
    Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 2018, 7068349. https://doi.org/10.1155/2018/7068349
    Watanabe, A., & Jo, K. (2007). Transformation of Fashion Magazine Media: Focusing on the Relationship between Magazines and Fashion since the 1990s. Design Theory, 50, 123-138. https://cir.nii.ac.jp/crid/1050282812674440448
    Webster, F. (2014). Theories of the information society. Routledge.
    Yamawaki, N. (2012). Within-culture variations of collectivism in Japan. Journal of Cross-Cultural Psychology, 43(8), 1191-1204.
    Zajonc, R. B. (2001). Mere Exposure: A Gateway to the Subliminal. Current Directions in Psychological Science, 10(6), 224-228. https://doi.org/10.1111/1467-8721.00154
    Zebrowitz, L. A., & Montepare, J. M. (2008). Social Psychological Face Perception: Why Appearance Matters. Social and Personality Psychology Compass, 2(3), 1497-1517. https://doi.org/https://doi.org/10.1111/j.1751-9004.2008.00109.x
    Zimeng, C., Xiangrong, M., & Zhiyu, Y. (2022, 2022/02/01). The Effect of Object Color Tones on Emotions. Proceedings of the 2021 International Conference on Education, Language and Art (ICELA 2021),
    井上, 雅. (2010). 日本における「ファッション誌」生成の歴史化 : 『装苑』から『アンアン』まで/『ル・シャルマン』から『若い女性』まで. 都市文化研究, 12, 125-138. https://doi.org/10.24544/ocu.20171213-110
    平井紀子. (2005). 日本のファッション誌: 発祥と変遷. 文化女子大学図書館所蔵服飾関連雑誌解題・目録, 3-13.
    安蔵裕子, アンゾウユウコ, 小泉真貴子, & コイズミマキコ. (2008). 「モダン・ガール」 にみる服飾文化. 學苑, 815, 98-115.
    朱道媛. (2020). 時尚雜誌封面之視覺表現研究-以《ELLE》雜誌為例 [Research on the Visual Performance of Fashion Magazine Covers-Taking "ELLE" Magazine as an Example]. 中華印刷科技年報(2020), 409-424.
    辻泉. (2013). 女性ファッション誌の過去・現在・未来: 内容分析を中心とする, マルチメソッド・アプローチによる実態把握に向けての試み. 人間関係学研究: 社会学社会心理学人間福祉学: 大妻女子大学人間関係学部紀要, 15, 177-199.
    長沢, 幸., & 長沢, 伸. (2008). 日本のファッションイラストレーションとメディア. 日本デザイン学会研究発表大会概要集, 55, 87-87. https://doi.org/10.11247/jssd.55.0.87.0
    富川淳子. (2012). 雑誌ブランド・イメージ形成の情報処理プロセスにおける専属モデルとスタイリングの影響力. 跡見学園女子大学文学部紀要, 47, 69-89.
    黃仁益. (2009). 女性時尚雜誌封面人物與讀者吸引力研究 [The Study on Women's Fashion Magazine Covering Figures and Readers' Attention]. 中華印刷科技年報(2009), 375-385. https://doi.org/10.30153/jcagst.200903.0026
    新倉貴士. (2013). ブランドらしさの認知構図: 女性誌ブランドのイメージに与える専属モデルとスタイリングの影響. 商学論究, 60(4), 159-179.
    Description: 碩士
    國立政治大學
    圖書資訊學數位碩士在職專班
    110913003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110913003
    Data Type: thesis
    Appears in Collections:[圖書資訊學數位碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    300301.pdf3416KbAdobe PDF2View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback