Reference: | [1] Aiyar, S., & Shetty, N. P. (2018). N-Gram Assisted Youtube Spam Comment Detection. International Conference on Computational Intelligence and Data Science (ICCIDS). Gurugram, India. [2] Alassad, M., Agarwal, N., & Hussain, M. N. (2019). Examining Intensive Groups in YouTube Commenter Networks. In Social, Cultural, and Behavioral Modeling. Washington, DC, USA: Springer. [3] Alberto, T. C., Lochter, J. V., & Almeida, T. A. (2015). TubeSpam: Comment Spam Filtering on YouTube. 14th International Conference on Machine Learning and Applications (ICMLA). Miami, FL, USA. [4] Alharbi, A., Dong, H., Yi, X., Tari, Z., & Khalil, I. (2021). Social Media Identity Deception Detection: A Survey. ACM Computing Surveys, Vol. 54, No. 3. [5] Bond, R. & Messing, S. (2015). Quantifying Social Media’s Political Space: Estimating Ideology from Publicly Revealed Preferences on Facebook. American Political Science Review, Vol. 109, No. 1. [6] Chowdury, R., Adnan, M. N., Mahmud, G. A., & Rahman, R. M. (2013). A Data Mining Based Spam Detection System for YouTube. Eighth International Conference on Digital Information Management (ICDIM). Islamabad, Pakistan. [7] Dutta, H. S., Jobanputra, M., Negi, H., & Chakraborty, T. (2021). Detecting and Analyzing Collusive Entities on YouTube. ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 5. [8] Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The Rise of Social Bots. Communications of the ACM, Vol. 59, No. 7. [9] Hussain, M. N., Tokdemir, S., Agarwal , N., & Al-khateeb, S. (2018). Analyzing Disinformation and Crowd Manipulation Tactics on YouTube. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Barcelona, Spain. [10] Kaushal, R., Saha, S., Bajaj, P., & Kumaraguru, P. (2016). KidsTube: Detection, Characterization and Analysis of Child Unsafe Content & Promoters on YouTube. 14th Annual Conference on Privacy, Security and Trust (PST). Auckland, New Zealand. [11] Korn, F., Labrinidis, A., Kotidis, Y., & Faloutsos C. (2000). Quantifiable Data Mining Using Ratio Rules. The VLDB Journal, Vol. 8. 78 [12] Singh, S., Kaushal, R., Buduru, A. B., & Kumaraguru, P. (2019). KidsGUARD: Fine Grained Approach for Child Unsafe Video Representation and Detection. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC). Limassol, Cyprus. [13] Varol, O., Ferrara , E., Davis, C. A., Menczer, F., & Flammini, A. (2017). Online Human-Bot Interactions: Detection, Estimation, and Characterization. Proceedings of the International AAAI Conference on Web and Social Media. Proceedings of the International AAAI Conference on Web and Social Media. [14] Yusof, Y., & Sadoon, O. H. (2017). Detecting Video Spammers in YouTube Social Media. Proceedings of the 6 th International Conference on Computing and Informatics (ICOCI). Kuala Iumpur, Malaysia. |