Reference: | Ajmera, J., Lathoud, G., & McCowan, L. (2004). Clustering and segmenting speakers and their locations in meetings. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 605-608. Montreal, Que, Canada. doi:10.1109/ICASSP.2004.1326058 Anguera, X., Bozonnet, S., Evans, N., Fredouille, C., Friedland, G., & Vinyals, O. (2012). Speaker diarization: A review of recent research. IEEE Transactions on Audio, Speech, and Language Processing, 20(2), 356-370. doi:10.1109/TASL.2011.2125954 Anguera, X., Wooters, C., Hernando, J. (2006). Purity algorithms for speaker diarization of meetings data. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 1025-1028. Toulouse, France. doi:10.1109/ICASSP.2006.1660198 Arbaugh, J. B. (2000). An exploratory study of the effects of gender on student learning and class participation in an internet-based MBA course. Management Learning, 31(4), 503-519. doi:10.1177/1350507600314006 Artino, A. R., Jr. (2008). Cognitive load theory and the role of learner experience: An abbreviated review for educational practitioners. AACE Journal, 16(4), 425-439. Bachour, K., Kaplan, F., & Dillenbourg, P. (2010). An interactive table for supporting participation balance in face-to-face collaborative learning. IEEE Transactions on Learning Technologies, 3(3), 203-213. doi:10.1109/TLT.2010.18 Bain, K., Basson, S., Faisman, A., & Kanevsky, D. (2005). Accessibility, transcription, and access everywhere. IBM Systems Journal, 44(3), 589-603. doi:10.1147/sj.443.0589 Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall. Bandura, A. (1997). Self -efficacy: The exercise of control. New York, NY: Freeman. doi:10.1891/0889-8391.13.2.158 Bandura, A. (2000). Exercise of human agency through collective efficacy. Current Directions in Psychological Science, 9(3), 75-78. doi:10.1111/1467-8721.00064 Bandura, A. (2002). Social cognitive theory in cultural contexts. Applied Psychology, 51(2), 269-290. doi:10.1111/1464-0597.00092 Bandura, A., & Barab, P. G. (1973). Processes governing disinhibitory effects through symbolic modeling. Journal of Abnormal Psychology, 82(1), 1-9. doi:10.1037/h0034968 Bassiou, N., Tsiartas, A., Smith, J., Bratt, H., Richey, C., Shriberg, E., et al. (2016). Privacy-preserving speech analytics for automatic assessment of student collaboration. In Proceedings of the Annual Conference of the International Speech Communication Association (ISCA), INTERSPEECH. pp. 888-892. Menlo Park, CA: SRI International. doi:10.21437/Interspeech.2016-1569 Beal, D. J., Cohen, R. R., Burke, M. J., & McLendon, C. L. (2003). Cohesion and performance in groups: A meta-analytic clarification of construct relations. Journal of Applied Psychology, 88(6), 989-1004. doi:10.1037/0021-9010.88.6.989 Biswas, S. (2023). Prospective Role of Chat GPT in the Military: According to ChatGPT. Qeios, 1-19. doi:10.32388/8WYYOD Bostock, S. J., & Lizhi, W. (2005). Gender in student online discussions. Innovations in Education & Teaching International, 42(1), 73-86. doi:10.1080/14703290500048978 Bredin, H., Yin, R., Coria, J. M., Gelly, G., Korshunov, P., Lavechin, M., Fustes, D., Titeux, H., Bouaziz, W., & Gill, M. P. (2020). Pyannote. audio: neural building blocks for speaker diarization. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7124-7128. Retrieved from https://arxiv.org/abs/1911.01255 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language Models are Few-Shot Learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NeurIPS), 33, pp. 1877-1901. doi:10.48550/arXiv.2005.14165 Camiciottoli, B. C. (2005). Adjusting a business lecture for an international audience: A case study. English for Specific Purposes, 24(2), 183-199. doi:10.1016/j.esp.2004.05.002 Carless, S. A., & De Paola, C. (2000). The measurement of cohesion in work teams. Small Group Research, 31(1), 71-88. doi:10.1177/104649640003100104 Carr, T., Cox, L., Eden, N., & Hanslo, M. (2004). From peripheral to full participation in a blended trade bargaining simulation. British Journal of Educational Technology, 35(2), 197-211. doi:10.1111/j.0007-1013.2004.00381.x Carron, A. V., Widmeyer, W. N., & Brawley, L. R. (1985). The development of an instrument to assess cohesion in sport teams: The group environment questionaire. Journal of Sport Psychology, 7(3), 244-266. doi:10.1123/jsp.7.3.244 Caspi, A., Chajut, E., & Saporta, K. (2008). Participation in class and in online discussions: Gender differences. Computers and Education, 50(3), 718-724. doi:10.1016/j.compedu.2006.08.003 Chen, C., & Chen, P. (2023). A gamified instant perspective comparison system to facilitate online discussion effectiveness. British Journal of Educational Technology, 54(3), 790-811. doi:10.1111/bjet.13295 Chen, C. M., Li, M. C., Chang, W. C., & Chen, X. X. (2021). Developing a topic analysis instant feedback system to facilitate asynchronous online discussion effectiveness. Computers & Education, 163, 104095. doi:10.1016/j.compedu.2020.104095 Chen, C. M., Li, M. C., & Huang, Y. L. (2023). Developing an instant semantic analysis and feedback system to facilitate learning performance of online discussion. Interactive Learning Environments, 31(3), 1402-1420. doi:10.1080/10494820.2020.1839505 Chen, C. M., Li, M. C., & Liao, C. K. (2023). Developing a collaborative writing system with visualization interaction network analysis to facilitate online learning performance. Interactive Learning Environments, 31(9), 6054-6073. doi:10.1080/10494820.2022.2028851 Chen, C. M., & Tsao, H. W. (2021). An instant perspective comparison system to facilitate learners’ discussion effectiveness in an online discussion process. Computers & Education, 164, 104037. doi:10.1016/j.compedu.2020.104037 Chen, Y. C., Cheng, C. Y., Chen, C. A., Sung, M. C., & Yeh, Y. R. (2021). Integrated semantic and phonetic post-correction for chinese speech recognition. In Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING), pp. 95-102. Taoyuan, Taiwan: The Association for Computational Linguistics and Chinese Language Processing (ACLCLP). doi:10.48550/arXiv.2111.08400 Chi, M. T., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219-243. doi:10.1080/00461520.2014.965823 Choi, I., Land, S. M., & Turgeon, A. J. (2005). Scaffolding peer-questioning strategies to facilitate metacognition during online small group discussion. Instructional Science, 33(5-6), 483-511. doi:10.1007/s11251-005-1277-4 Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64(1), 1-35. doi:10.3102/00346543064001001 Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). New York, NY: Routledge. doi:10.4324/9780203771587 Coria, J. M., Bredin, H., Ghannay, S., & Rosset, S. (2021). Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation. In Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 1139-1146. Cartagena, Colombia. doi:10.1109/ASRU51503.2021.9688044 Crook, C. (1998). Children as computer users: The case of collaborative learning. Computers & Education, 30(3-4), 237-247. doi:10.1016/S0360-1315(97)00067-5 Curtis, D. D., & Lawson, M. J. (2001). Exploring collaborative online learning. Journal of Asynchronous Learning Networks, 5(1), 21-34. doi:10.24059/olj.v5i1.1885 Dallimore, E. J., Hertenstein, J. H., & Platt, M. B. (2010). Class participation in accounting courses: Factors that affect student comfort and learning. Issues in Accounting Education, 25(4), 613-629. doi:10.2308/iace.2010.25.4.613 Davis, B. G. (1993). Tools for teaching (1st ed.). San Francisco, CA: Jossey-Bass. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982 Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. J. (2007). Students’ experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23(1), 496-514. doi:10.1016/j.chb.2004.10.021 Dolmans, D. H. J. M., & Schmidt, H. G. (2006). What do we know about cognitive and motivational effects of small group tutorials in problem-based learning? Advances in Health Sciences Education, 11(4), 321-336. doi:10.1007/s10459-006-9012-8 Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., et al. (2023). Opinion paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. doi:10.1016/j.ijinfomgt.2023.102642 Edmondson, A. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350-383. doi:10.2307/2666999 Emich, K. J. (2012). Transpersonal efficacy: How efficacy perceptions of single others influence task performance. Human Performance, 25(3), 235-254. doi:10.1080/08959285.2012.683906 Fang, B. (2009). From distraction to engagement wireless devices in the classroom. EDUCAUSE Quarterly, 32(4), 4-9. Retrieved from https://er.educause.edu/articles/2009/12/from-distraction-to-engagement-wireless-devices-in-the-classroom Feng, S., Halpern, B. M., Kudina, O., & Scharenborg, O. (2024). Towards inclusive automatic speech recognition. Computer Speech & Language, 84, 101567. doi:10.1016/j.csl.2023.101567 Festinger, L., Schachter, S., & Back, K. (1950). Social pressures in informal groups: A study of human factors in housing. Stanford, CA: Stanford University Press. Fiscus, J. G., Ajot, J., & Garofolo, J. S. (2007). The rich transcription 2007 meeting recognition evaluation. Lecture Notes in Computer Science, 4625, 373-389. doi:10.1007/978-3-540-68585-2_36 Gao, F., & Putnam, R. T. (2009). Using research on learning from text to inform online discussion. Journal of Educational Computing Research, 41(1), 1-37. doi:10.2190/EC.41.1.a Gauvain, J.-L., Lamel, L., Adda, G. (1998). Partitioning and transcription of broadcast news data. In Proceedings of the International Conference on Spoken Language Processing (ICSLP), vol. 4, pp. 1335-1338. Sydney, Australia. doi:10.21437/ICSLP.1998-618 Gish, H., Siu, M., Rohlicek, R. (1991). Segregation of speakers for speech recognition and speaker identification. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 873-876. doi:10.1109/ICASSP.1991.150477 Glass, J., (2007, November 13). A brief introduction to automatic speech recognition. Retrieved from https://www.cs.columbia.edu/~mcollins/6864/slides/asr.pdf Goddard, R. D. (2001). Collective efficacy: A neglected construct in the study of schools and student achievement. Journal of Educational Psychology, 93(3), 467-476. doi:10.1037/0022-0663.93.3.467 Gondi, S., & Pratap, V. (2021). Performance and efficiency evaluation of ASR inference on the edge. Sustainability, 13(22), 12392. doi:10.3390/su132212392 González, M. G., Burke, M. J., Santuzzi, A. M., & Bradley, J. C. (2003). The impact of group process variables on the effectiveness of distance collaboration groups. Computers in Human Behavior, 19(5), 629-648. doi:10.1016/S0747-5632(02)00084-5 Greenlees, I. A., Graydon, J. K., & Maynard, I. W. (1999). The impact of collective efficacy beliefs on effort and persistence in a group task. Journal of Sports Sciences, 17, 151-158. doi:10.1080/026404199366253 Gu, X., Shao, Y., Guo, X., & Lim, C. P. (2015). Designing a role structure to engage students in computer-supported collaborative learning. The Internet and Higher Education, 24, 13-20. doi:10.1016/j.iheduc.2014.09.002 Guiller, J., & Durndell, A. (2007). Students’ linguistic behaviour in online discussion groups: Does gender matter? Computers in Human Behavior, 23(5), 2240-2255. doi:10.1016/j.chb.2006.03.004 Guldberg, K., & Pilkington, R. (2007). Tutor roles in facilitating reflection on practice through online discussion. Educational Technology & Society, 10(1), 61-72. Guo, C., Lu, Y., Dou, Y., & Wang, F. Y. (2023). Can ChatGPT boost artistic creation: The need of imaginative intelligence for parallel art. IEEE/CAA Journal of Automatica Sinica, 10(4), 835-838. doi:10.1109/JAS.2023.123555 Harabagiu, S., & Lacatusu, F. (2010). Using topic themes for multi-document summarization. ACM Transactions on Information Systems, 28(3), 1-47. doi:10.1145/1777432.1777436 Hasan, B., & Ahmed, M. U. (2007). Effects of interface style on user perceptions and behavioral intention to use computer systems. Computers in Human Behavior, 23(6), 3025-3037. doi:10.1016/j.chb.2006.08.016 He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102. doi:10.1016/j.chb.2012.07.020 Heimbuch, S., & Bodemer, D. (2017). Controversy awareness on evidence-led discussions as guidance for students in wiki-based learning. The Internet and Higher Education, 33, 1-14. doi:10.1016/j.iheduc.2016.12.001 Hembrooke, H., & Gay, G. (2003). The laptop and the lecture: The effects of multitasking in learning environments. Journal of Computing in Higher Education, 15(1), 46-64. doi:10.1007/BF02940852 Hewitt, J. (2001). Beyond threaded discourse. International Journal of Educational Telecommunications, 7(3), 207-221. Retrieved from https://tspace.library.utoronto.ca/handle/1807/26522 Hewitt, J. (2003). How habitual online practices affect the development of asynchronous discussion threads. Journal of Educational Computing Research, 28(1), 31-45. doi:10.2190/PMG8-A05J-CUH1-DK14 Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real conversations with artificial intelligence: A comparison between human-human online conversations and human-chatbot conversations. Computers in Human Behavior, 49, 245-250. doi:10.1016/j.chb.2015.02.026 Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97. doi:10.1109/MSP.2012.2205597 Hodges, L., & Carron, A. V. (1992). Collective efficacy and group performance. International Journal of Sport Psychology, 23(1), 48-59. Howe, C., Tolmie, A., & MacKenzie, M. (1996). Computer support for the collaborative learning of physics concepts. In O’Malley, C. (Ed.) Computer Supported Collaborative Learning (pp. 51-68). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-85098-1_4 Hoyles, C., Healy, L. & Pozzi, S. (1994). Groupwork with computers: An overview of findings. Journal of ComputerAssisted Learning, 10(4), 202-215. doi:10.1111/j.1365-2729.1994.tb00296.x Huang, S. P. (2018). Effects of using artificial intelligence teaching system for environmental education on environmental knowledge and attitude. EURASIA Journal of Mathematics, Science and Technology Education, 14(7), 3277-3284. doi:10.29333/ejmste/91248 Hwang, W. Y., Shadiev, R., Kuo, T. C. T., & Chen, N. S. (2012). Effects of speech-to-text recognition application on learning performance in synchronous cyber classrooms. Journal of Educational Technology & Society, 15(1), 367-380. Huang, Y., Liu, C., Shadiev, R., Shen, M., & Hwang, W. (2015). Investigating an application of speech‐to‐text recognition: A study on visual attention and learning behaviour. Journal of Computer Assisted Learning, 31(6), 529-545. doi:10.1111/jcal.12093 Huang, Y. M., Shadiev, R., & Hwang, W. Y. (2016). Investigating the effectiveness of speech-to-text recognition applications on learning performance and cognitive load. Computers & Education, 101, 15-28. doi:10.1016/j.compedu.2016.05.011 Huang, Y., Wang, W., Zhao, G., Liao, H., Xia, W., & Wang, Q. (2023). Towards word-level end-to-end neural dpeaker fiarization with auxiliary network. arXiv preprint arXiv:2309.08489. doi:10.48550/arXiv.2309.08489 Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69, 121-130. doi:10.1016/j.compedu.2013.07.008 Jahang, N., Nielsen, W. S., & Chan, E. K. H. (2010). Collaborative learning in an online course: A comparison of communication patterns in small and whole group activities. Journal of Distance Education, 24(2), 39-58. Jain, U., Siegler, M. A., Doh, S. J., Gouvea, E., Huerta, J., Moreno, P. J., Raj, B., Stern, R. M. (1996). Recognition of continuous broadcast news with multiple unknown speakers and environments. In Proceedings of ARPA Spoken Language Technology Workshop. pp. 61-66. Jin, Q., Laskowski, K., Schultz, T., Waibel, A. (2004). Speaker segmentation and clustering in meetings. In Proceedings of the International Conference on Spoken Language Processing (ICSLP), vol. 4, pp. 597-600. doi:10.21437/Interspeech.2004-249 Johnson, D. W. & Johnson, R. T. (1975). Learning together and alone: Cooperation, competition, and individualization. Englewood Cliffs. NJ: Prentice Hall. Johnson, D. W., Johnson, R. T., & Smith, K. (2007). The state of cooperative learning in postsecondary and professional settings. Educational Psychology Review, 19(1), 15-29. doi:10.1007/s10648-006-9038-8 Jones, D. (2005). Voice recognition: A new assessment tool? Technology, Pedagogy and Education, 14(3), 413-427. doi:10.1080/14759390500200205 Jones, L. C. (2003). Supporting listening comprehension and vocabulary acquisition with multimedia annotations: The students’ voice. CALICO Journal, 21(1), 41-65. doi:10.1558/cj.v21i1.41-65 Kallio, H., Pietilä, A. M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: Developing a framework for a qualitative semi-structured interview guide. Journal of Advanced Nursing, 72(12), 2954-2965. doi:10.1111/jan.13031 Kanevsky, D., Basson, S., Chen, S., Faisman, A., Zlatsin, A., Conrod, S., & McCormick, A. (2006). Speech transcription services. In Proceedings of the Speech and Computer International Conference (SPECOM), pp. 37-43. St. Petersburg, Russia. Kang, L., Riba, P., Rusiñol, M., Fornés, A., & Villegas, M. (2022). Pay attention to what you read: Non-recurrent handwritten text-Line recognition. Pattern Recognition, 129, 108766. doi:10.1016/j.patcog.2022.108766 Kenny, P., Reynolds, D., & Castaldo, F. (2010). Diarization of telephone conversations using factor analysis. Journal of Selected Topics in Signal Processing, 4(6), 1059-1070. doi:10.1109/JSTSP.2010.2081790 Kerr, N. L. (1983). Motivation losses in small groups: A social dilemma analysis. Journal of Personality and Social Psychology, 45(4), 819-828. doi:10.1037/0022-3514.45.4.819 Kheir, R., & Way, T. (2006). Improving speech recognition to assist real-time classroom note taking. In Proceeding of the Rehabilitation Engineering and Assistive Technology Society of North America conference (RESNA), pp. 1-4. Kim, H., & Song, J. (2006). The features of peer argumentation in middle school students’ scientific inquiry. Research in Science Education, 36(3), 211-233. doi:10.1007/s11165-005-9005-2 Kim, J., Truong, K. P., Charisi, V., Zaga, C., Lohse, M., Heylen, D., & Evers, V. (2015). Vocal turn-taking patterns in groups of children performing collaborative tasks: an exploratory study. In Proceedings of the Sixteenth Annual Conference of the International Speech Communication Association (ISCA), INTERSPEECH. pp. 1645-1649. doi:10.21437/Interspeech.2015-380 King, M. R. & ChatGPT. (2023). A conversation on artificial intelligence, chatbots, and plagiarism in higher education. Cellular and Molecular Bioengineering, 16(1), 1-2. doi:10.1007/s12195-022-00754-8 Kirsh, D. (2010). Thinking with external representations. AI & SOCIETY, 25(4), 441-454. doi:10.1007/s00146-010-0272-8 Knowlton, D. S. (2001). Promoting durable knowledge construction through online discussion. In Proceedings of the Annual Mid‐South Instructional Technology Conference, pp. 1-13. Murfreesboro, Tennessee. Retrieved from https://files.eric.ed.gov/fulltext/ED463724.pdf Kozlowski, S. W. J., & Chao, G. T. (2012). The dynamics of emergence: Cognition and cohesion in work teams. Managerial and Decision Economics, 33(5-6), 335-354. doi:10.1002/mde.2552 Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19(3), 335-353. doi:10.1016/S0747-5632(02)00057-2 Kuo, T. C. T., Shadiev, R., Hwang, W. Y., & Chen, N. S. (2012). Effects of applying STR for group learning activities on learning performance in a synchronous cyber classroom. Computers & Education, 58(1), 600-608. doi:10.1016/j.compedu.2011.07.018 Lambiase, J. J. (2010). Hanging by a thread: Topic development and death in an online discussion of breaking news. Language at Internet, 7(9), 1-22. Retrieved from https://www.languageatinternet.org/articles/2010/2814 Laurillard, D. (2002). Rethinking University teaching: A conversational framework for the effective use of learning technologies (2nd Ed.). London: Routledge. doi:10.4324/9781315012940 Lee, C., & Farh, J. L. (2004). Joint effects of group efficacy and gender diversity on group cohesion and performance. Applied Psychology, 53(1), 136-154. doi:10.1111/j.1464-0597.2004.00164.x Leeuwen, D.A.V., Konecny, M. (2008). Progress in the AMIDA speaker diarization system for meeting data. In Proceedings of International Evaluation Workshops CLEAR 2007 and RT 2007, vol. 4625, pp. 475-483. Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-540-68585-2_44 Lenhard, W. & Lenhard, A. (2016). Computation of effect sizes. Dettelbach, Germany: Psychometrica. Retrieved from https://www.psychometrica.de/effect_size.html Lent, R. W., Schmidt, J., & Schmidt, L. (2006). Collective efficacy beliefs in student work teams: Relation to self-efficacy, cohesion, and performance. Journal of Vocational Behavior, 68(1), 73-84. doi:10.1016/j.jvb.2005.04.001 Li, Y., Wald M., Wills G., Khoja S., Millard D., Kajaba J., Singh P., & Gilbert L. (2011). Synote: Development of a web-based tool for synchronized annotations. New Review of Hypermedia and Multimedia, 17(3), 295-312. doi:10.1080/13614568.2011.558118 Liaw, S. S., & Huang, H. M. (2013). Perceived satisfaction, perceived usefulness and interactive learning environments as predictors to self-regulation in e-learning environments. Computers & Education, 60(1), 14-24. doi:10.1016/j.compedu.2012.07.015 Liebrenz, M., Schleifer, R., Buadze, A., Bhugra, D., & Smith, A. (2023). Generating scholarly content with ChatGPT: Ethical challenges for medical publishing. The Lancet Digital Health, 5(3), e105-e106. doi:10.1016/S2589-7500(23)00019-5 Light, P. (1993). Collaborative learning with computers. In Scrimshaw, P. (Ed.), Language, classrooms and computers, pp. 40-56. London: Routledge. Light, P., Littleton, K., Messer, D. & Joiner, R. (1994). Social and communicative processes in computer-based problem solving. European Journal of Psychology of Education, 9(2), 93-109. doi:10.1007/BF03173545 Liu, D., & Kubala, F. (1999). Fast speaker change detection for broadcast news transcription and indexing. In Proceedings of the Sixth European Conference on Speech Communication and Technology, vol. 3, pp. 1031-1034. Budapest, Hungary. doi:10.21437/Eurospeech.1999-167 Liu, D., & Kubala, F. (2003). A cross-channel modeling approach for automatic segmentation of conversational telephone speech [automatic speech recognition applications]. In Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 333-338. St. Thomas, U.S. doi:10.1109/ASRU.2003.1318463 Lott, A. J., & Lott, B. E. (1965). Group cohesiveness as interpersonal attraction: A review of relationships with antecedent and consequent variables. Psychological Bulletin, 64(4), 259-309. doi:10.1037/h0022386 Lozano Murciego, Á., Jiménez-Bravo, D. M., Pato Martínez, D., Valera Román, A., & Luis Lazo, G. (2020). Voice assistant and route optimization system for logistics companies in depopulated rural areas. Sustainability, 12(13), 5377-5396. doi:10.3390/su12135377 Lubold, N., & Pon-Barry, H. (2014). Acoustic-prosodic entrainment and rapport in collaborative learning dialogues. In Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge, pp. 5-12. Istanbul Turkey: ACM. doi:10.1145/2666633.2666635 Lüscher, C., Beck, E., Irie, K., Kitza, M., Michel, W., Zeyer, A., Schlüter, R., & Ney, H. (2019). RWTH ASR systems for librispeech: Hybrid vs attention- w/o data augmentation. In Proceedings of the 20th conference of the International Speech Communication Association (ISCA), INTERSPEECH. pp. 231-235. doi:10.21437/Interspeech.2019-1780 Luz, S. (2013). Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In Proceedings of the 15th ACM on International conference on multimodal interaction, pp. 575-582. Sydney Australia: ACM. doi:10.1145/2522848.2533788 Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and taxonomy of team processes. Academy of Management Review, 26(3), 356-376. doi:10.2307/259182 McGee, R. W. (2023). Who were the 10 best and 10 worst U.S. presidents? The opinion of ChatGPT (artificial intelligence). Working Paper, February 23. doi:10.2139/ssrn.4367762 Mershad, K., & Said, B. (2022). DIAMOND: A tool for monitoring the participation of students in online lectures. Education and Information Technologies, 27(4), 4955-4985. doi:10.1007/s10639-021-10801-y Miller, L. (2007). Issues in lecturing in a second language: Lecturer’s behaviour and students’ perceptions. Studies in Higher Education, 32(6), 747-760. doi:10.1080/03075070701685163 Mokmin, N. A. M. (2020). The effectiveness of a personalized virtual fitness trainer in teaching physical education by applying the artificial intelligent algorithm. International Journal of Human Movement and Sports Sciences, 8(5), 258-264. doi:10.13189/saj.2020.080514 Mullen, B., & Copper, C. (1994). The relation between group cohesiveness and performance: An integration. Psychological Bulletin, 115(2), 210-227. doi:10.1037/0033-2909.115.2.210 Nabiyev, V., Karal, H., Arslan, S., Erumit, A. K., & Cebi, A. (2013). An artificial intelligence-based distance education system: Artimat. The Turkish Online Journal of Distance Education, 14(2), 81-98. Nisbet, P. & Wilson, A. (2002). Introducing speech recognition in schools: Using IBM ViaVoice. Edinburgh, UK: CALL Centre, University of Edinburgh. Nisbet, P., Wilson, A., & Aitken, S. (2005). Speech recognition for students with disabilities. In Proceedings of the Inclusive and Supportive Education Congress, ISEC 2005 Conference. Delph, UK: Inclusive Technology. Nisbet, P., Wilson, A., & Balfour, F. (2008). Introducing speech recognition in schools: Using dragon naturally speaking. Edinburgh, UK: CALL Centre, University of Edinburgh. Norris, S. P., & Phillips, L. M. (1994). The relevance of a reader’s knowledge within a perspectival view of reading. Journal of Reading Behavior, 26(4), 391-412. doi:10.1080/10862969409547860 Padmanabhan, M., Bahl, L.R., Nahamoo, D., Picheny, M.A. (1996). Speaker clustering and transformation for speaker adaptation in large-vocabulary speech recognition systems. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 701-704. Atlanta, GA, USA: IEEE. doi:10.1109/ICASSP.1996.543217 Park, T. J., Kanda, N., Dimitriadis, D., Han, K. J., Watanabe, S., & Narayanan, S. (2022). A review of speaker diarization: Recent advances with deep learning. Computer Speech & Language, 72, 101317. doi:10.1016/j.csl.2021.101317 Peterson, E., Mitchell, T. R., Thompson, L., & Burr, R. (2000). Collective efficacy and aspects of shared mental models as predictors of performance over time in work groups. Group Processes & Intergroup Relations, 3(3), 296-316. doi:10.1177/1368430200033005 Porter, B., & Grippa, F. (2020). A platform for AI-enabled real-time feedback to promote digital collaboration. Sustainability, 12(24), 10243. doi:10.3390/su122410243 Ranchal, R., Taber-Doughty, T., Guo, Y., Bain, K., Martin, H., Robinson, J. P., & Duerstock, B. S. (2013). Using speech recognition for real-time captioning and lecture transcription in the classroom. IEEE Transactions on Learning Technologies, 6(4), 299-311. doi:10.1109/TLT.2013.21 Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154. doi:10.1016/j.iotcps.2023.04.003 Roberts, T. S., & McInnerney, J. M. (2007). Seven problems of online group learning (and their solutions). Educational Technology & Society, 10(4), 257-268. RodrA-guez, ˜ J. A., Santana, M. G., Perera, M. V. A., & Pulido, J. R. (2021). Embodied conversational agents: Artificial intelligence for autonomous learning. Pixel-Bit, Revista de Medios y Educacion, 62, 107-144. doi:10.12795/pixelbit.86171 Rogers, P., & Lea, M. (2004). Cohesion in online groups. In K. Morgan, C. A. Brebbia, J. Sanchez, & A. Voiskounsky (Eds.), Human perspectives in the Internet society: Culture, psychology and gender (pp. 115-124). Southampton, UK: WIT Press. Rogers, Y., Sharp, H., & Preece, J. (2023). Interaction design: Beyond human-computer interaction. Hoboken: Wiley. Rohlicek, J.R., Ayuso, D., Bates, M., Bobrow, R., Boulanger, A., Gish, H., Jeanrenaud, P., Meteer, M., Siu, M. (1992). Gisting conversational speech. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, pp. 113-116. San Francisco, CA. doi:10.1109/ICASSP.1992.226107 Rosenberg, A.E., Gorin, A., Liu, Z., Parthasarathy, P. (2002). Unsupervised speaker segmentation of telephone conversations. In Proceedings of the International Conference on Spoken Language Processing (ICSLP), vol. 1, pp. 565-568. Denver, Colorado, USA. doi:10.21437/ICSLP.2002-193 Roseth, C. J., Johnson, D. W., & Johnson, R. T. (2008). Promoting early adolescents’ achievement and peer relationships: The effects of cooperative, competitive, and individualistic goal structures. Psychological Bulletin, 134(2), 223-246. doi:10.1037/0033-2909.134.2.223 Rouvier, M., Bousquet, P. M., & Favre, B. (2015). Speaker diarization through speaker embeddings. In European Signal Processing Conference (EUSIPCO), pp. 2082-2086. doi:10.1109/EUSIPCO.2015.7362751 Ruel, G., Bastiaans, N., & Nauta, A. (2003). Free riding and team performance in project education. International Journal of Management Education, 3(1), 26-38. Ryba, K., McIvor, T., Shakir, M., & Paez, D. (2006). Liberated learning: Analysis of university students’ perceptions and experiences with continuous automated speech recognition. Journal of Instructional Science and Technology, 9(1), 1-19. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371-391. doi:10.1007/s11165-006-9030-9 Salas, E., Grossman, R., Hughes, A. M., & Coultas, C. W. (2015). Measuring team cohesion: Observations from the science. Human Factors, 57(3), 365-374. doi:10.1177/0018720815578267 Salas, E., Sims, D. E., & Burke, C. S. (2005). Is there a “big five” in teamwork? Small Group Research, 36(5), 555-599. doi:10.1177/1046496405277134 Salter, S., Douglas, T., & Kember, D. (2017). Comparing face-to-face and asynchronous online communication as mechanisms for critical reflective dialogue. Educational Action Research, 25(5), 790-805. doi:10.1080/09650792.2016.1245626 Shafey, L. E., Soltau, H. & Shafran, I. (2019). Joint speech recognition and speaker diarization via sequence transduction. In Annual Conference of the International Speech Communication Association (ISCA), INTERSPEECH. pp. 396-400. doi:10.21437/Interspeech.2019-1943 Shaw, M. E., Robbin, R., & Belser, J. R. (1981). Group Dynamics: The Psychology of Small Group Behavior. New York: McGraw-Hill. Seibold, G. L., & Kelly, D. R. (1988). Development of the combat platoon cohesion questionnaire. Alexandria, VA: US Army Research Institute for the Behavioral Sciences. Shadiev, R., Hwang, W. Y., Chen, N. S., & Huang, Y. M. (2014). Review of speech-to-text recognition technology for enhancing learning. Journal of Educational Technology & Society, 17(4), 65-84. Siu, M. H., George, Y., Gish, H. (1992). An unsupervised, sequential learning algorithm for segmentation of speech waveforms with multiple speakers. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, pp. 189-192. San Francisco, CA. doi:10.1109/ICASSP.1992.226088 Slavin, R. E. (1983). When does cooperative learning increase student achievement? Psychological Bulletin, 94(3), 429-445. doi:10.1037/0033-2909.94.3.429 Soong, R., Pautler, B. G., Moser, A., Jenne, A., Lysak, D. H., Adamo, A., & Simpson, A. J. (2020). CASE (computer-assisted structure elucidation) study for an undergraduate organic chemistry class. Journal of Chemical Education, 97(3), 855-860. doi:10.1021/acs.jchemed.9b00498 Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. Review of Educational Research, 69(1), 21-51. doi:10.3102/00346543069001021 Stevens, R. (2015). Role-play and student engagement: Reflections from the classroom. Teaching in Higher Education, 20(5), 481-492. doi:10.1080/13562517.2015.1020778 Sue-Chan, C., & Sargent, L.D. (1999). The collective efficacy of business students: The role of individual factors and group processes. Paper presented at the August 1999 National Academy of Management Meetings, Chicago, IL. Thorp, H. H. (2023). ChatGPT is fun, but not an author. Science, 379(6630), 313. doi:10.1126/science.adg7879 Tranter, S. E., & Reynolds, D. A. (2004). Speaker diarisation for broadcast news. In Proceedings of the ISCA on Speaker and Language Recognition Workshop (Odyssey 2004), pp. 337-344. Toledo, Spain. Tranter, S. E., & Reynolds, D. A. (2006). An overview of automatic speaker diarization systems. IEEE Transactions on Audio, Speech and Language Processing, 14(5), 1557-1565. doi:10.1109/TASL.2006.878256 Triantafyllakos, G., Palaigeorgiou, G., & Tsoukalas, I. A. (2011). Designing educational software with students through collaborative design games: The We!Design&Play framework. Computers & Education, 56(1), 227-242. doi:10.1016/j.compedu.2010.08.002 Tsai, M. J., Liang, J. C., Hou, H. T., & Tsai, C. C. (2015). Males are not as active as females in online discussion: Gender differences in face-to-face and online discussion strategies. Australasian Journal of Educational Technology, 31(3), 263-277. doi:10.14742/ajet.1557 Tsai, M. J., & Tsai, C. C. (2010). Junior high school students’ internet usage and self-efficacy: A re-examination of the gender gap. Computers & Education, 54(4), 1182-1192. doi:10.1016/j.compedu.2009.11.004 Van Blankenstein, F. M., Dolmans, D. H. J. M., Van der Vleuten, C. P. M., & Schmidt, H. G. (2013). Relevant prior knowledge moderates the effect of elaboration during small group discussion on academic achievement. Instructional Science, 41, 729-744. doi:10.1007/s11251-012-9252-3 Van Merriënboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professional education: Design principles and strategies. Medical Education, 44, 85-93. doi:10.1111/j.1365-2923.2009.03498.x Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, AN., Kaiser, L., Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, 30, pp 5998-6008. Vaughan, G., & Hogg, M. A. (2005). Introduction to social psychology. Sydney, NSW: Prentice Hall. Vijayasenan, D., Valente, F., Bourlard, H. (2009). An information theoretic approach to speaker diarization of meeting data. IEEE Transactions on Audio, Speech, Language Processing, 17(7), 1382-1393. doi:10.1109/TASL.2009.2015698 Wald, M., & Bain, K. (2008). Universal access to communication and learning: The role of automatic speech recognition. International Journal Universal Access in the Information Society, 6(4), 435-447. doi:10.1007/s10209-007-0093-9 Wang, Q., Downey, C., Wan, L., Mansfield, P.A., Moreno, I.L. (2018). Speaker diarization with LSTM. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5239-5243. doi:10.1109/ICASSP.2018.8462628 Wang, S. L., & Hwang, G. J. (2012). The role of collective efficacy, cognitive quality, and task cohesion in computer-supported collaborative learning (CSCL). Computers & Education, 58(2), 679-687. doi:10.1016/j.compedu.2011.09.003 Wang, S. L., & Lin, S. S. J. (2007). The effects of group composition of self-efficacy and collective efficacy on computer-supported collaborative learning. Computers in Human Behavior, 23(5), 2256-2268. doi:10.1016/j.chb.2006.03.005 Wang, S. L., & Lin, S. S. J. (2007a). The application of social cognitive theory to web-based learning through NetPorts. British Journal of Educational Technology, 38(4), 600-612. doi:10.1111/j.1467-8535.2006.00645.x Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin, N. E. Y., Heymann, J., Wiesner, M., Chen, N., Renduchintala, A., & Ochiai, T. (2018). ESPnet: End-to-end speech processing toolkit. In Proceedings of Interspeech, pp 2207-2211. Hyderabad, India. doi:10.21437/Interspeech.2018-1456 Watson, C. B., Chemers, M. M., & Preiser, N. (2001). Collective efficacy: A multilevel analysis. Personality and Social Psychology Bulletin, 27(8), 1057-1068. doi:10.1177/0146167201278012 Way, T., Kheir, R., & Bevilacqua, L. (2008). Achieving acceptable accuracy in a low-cost, assistive note-taking, speech transcription system. In Proceedings of the IASTED International Conference on Telehealth and Assistive Technologies, pp. 72-77. Baltimore, Maryland, United States. Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71-95. doi:10.1016/j.compedu.2005.04.003 Weinberger, A., Stegmann, K., Fischer, F., & Mandl, H. (2007). Scripting argumentative knowledge construction in computer-supported learning environments. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning (pp. 191-211). New York: Springer. doi:10.1007/978-0-387-36949-5_12 Whyte, G. (1998). Recasting janis’s groupthink model: The key role of collective efficacy in decision fiascoes. Organizational Behavior and Human Decision Processes, 73, 185-209. doi:10.1006/obhd.1998.2761 Williams, E. A., Duray, R., & Reddy, V. (2006). Teamwork orientation, group cohesiveness, and student learning: A study of the use of teams in online distance education. Journal of Management Education, 30(4), 592-616. doi:10.1177/1052562905276740 Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., & Duan, N. (2023). Visual ChatGPT: Talking, drawing and editing with visual foundation models. arXiv preprint arXiv:2303.04671. doi:10.48550/arxiv.2303.04671 Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566, 378-382. doi:10.1038/s41586-019-0941-9 Wu, Y. T., & Tsai, C. C. (2011). High school students’ informal reasoning regarding a socio‐scientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371-400. doi:10.1080/09500690903505661 Yang, C. C., & Wang, F. L. (2008). Hierarchical summarization of large documents. Journal of the American Society for Information Science and Technology, 59(6), 887-902. doi:10.1002/asi.20781 Yang, D., Oh, E. S., & Wang, Y. (2020). Hybrid physical education teaching and curriculum design based on a voice interactive artificial intelligence educational robot. Sustainability, 12(19), 8000. doi:10.3390/su12198000 Yang, Y., Yao, Q., & Qu, H. (2017). VISTopic: A visual analytics system for making sense of large document collections using hierarchical topic modeling. Visual Informatics, 1(1), 40-47. doi:10.1016/j.visinf.2017.01.005 Zaccaro, S. J. (1991). Nonequivalent associations between forms of cohesiveness and group-related outcomes: Evidence for multidimensionality. The Journal of Social Psychology, 131(3), 387-399. doi:10.1080/00224545.1991.9713865 Zaccaro, S. J., Blair, V., Peterson, C., & Zazanis, M. (1995). Collective efficacy. In J. E. Maddux (Ed.), Self-efficacy, adaptation, and adjustment, pp. 305-328. New York: Plenum Press. doi:10.1007/978-1-4419-6868-5_11 Zaccaro, S. J., & Lowe, C. A. (1988). Cohesiveness and performance on an additive task: Evidence for multidimensionality. The Journal of Social Psychology, 128(4), 547-558. doi:10.1080/00224545.1988.9713774 Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research, and practice. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of Research on Science Education, Volume II, pp. 697-726. Mahwah, NY: Routledge. doi:10.4324/9780203097267-45 Zhan, Z., Fong, P., S., W., Mei, H., & Liang, T. (2015). Effects of gender grouping on students’ group performance, individual achievements and attitudes in computer-supported collaborative learning. Computers in Human Behavior, 48, 587-596. doi:10.1016/j.chb.2015.02.038 Zhou, K. H., Pullen, C., Holmes, J., & Slotta, J. D. (2023). Supporting collective inquiry in a critical action game: A role for open AI conversational agents. In Proceedings of the 16th International Conference on Computer-Supported Collaborative Learning (CSCL), pp. 428-431. Zschorn, A., Littlefield, J. S., Broughton, M., Dwyer, B., & Hashemi-Sakhtsari, A. (2003). Transcription of multiple speakers using speaker dependent speech recognition. Australian Government Department of Defence Technical Report DSTO-TR-1498. Canberra, Australia: The Defense Science and Technology Organization. |