政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/149419
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114409/145439 (79%)
造訪人次 : 53234226      線上人數 : 650
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/149419
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/149419


    題名: Spatial and Statistical Heterogeneities in Population Science Using Geographically Weighted Quantile Regression
    以地理加權分量迴歸探討人口研究之空間和統計異質性
    作者: 陳怡如;楊澤全
    Chen, Vivian Yi-ju;Yang, Tse-chuan
    貢獻者: 統計系
    關鍵詞: Heterogeneity;Homogeneity;Geographically weighted regression;Quantile regression;Spatial demography
    異質性;同質性;地理加權迴歸;分量迴歸;空間人口學
    日期: 2022-12
    上傳時間: 2024-01-29 09:12:11 (UTC+8)
    摘要: There is a growing interest in exploring heterogeneous associations with independent variables across the distribution of either the dependent variable (using quantile regression) or across geographic space (using geographically weighted regression). The former is often known as statistical heterogeneity, whereas the latter refers to spatial heterogeneity. However, population research has been slow to adopt either of these methods. This study first briefly discusses why more attention to the concept of heterogeneity is needed and then introduces a method that simultaneously considers statistical and spatial heterogeneity, namely geographically weighted quantile regression (GWQR). We illustrate how to use GWQR with U.S. county-level coronavirus disease (COVID-19) vaccination data and explain how GWQR identifies significant heterogeneities in the relationships between the vaccination rate and its determinants across space and over the vaccination distribution. The results suggest that both spatial and statistical heterogeneity are a common occurrence. For example, the COVID-19 case rate has a stronger association in counties in the lower quantiles than in the higher quantiles. The spatial distribution of this relationship is focused on counties in the Mountain states and is shifted to the Midwest region. As such, we conclude that both heterogeneities should be considered in population research.
    愈來愈多人對於探索自變數與反應變數間在不同分量下(使用分量迴歸〔quantile regression〕)或在空間上(使用地理加權迴歸〔geographically weighted regression〕)之異質關係感到興趣。前者通常被視為一種統計異質性,而後者則指的是空間異質性。然而,人口研究在採用這些方法方面進展略顯緩慢。本研究首先簡要討論了為何人口研究者需要多加關注異質性的概念,並介紹了一種同時考量統計和空間異質性的方法,即地理加權分量迴歸(geographically weighted quantile regression, GWQR)。我們以美國各郡新型冠狀病毒(coronavirus disease, COVID-19)疫苗接種率之資料為例,說明如何應用GWQR,並解釋GWQR如何分析疫苗接種率及其因子之間在空間和疫苗接種率分布上的異質性。研究結果顯示,空間和統計異質性是普遍存在的。例如,COVID-19病例率在位於疫苗接種率低分位數的郡中其關聯性比在高分位數的郡中更強。這種關聯性的空間分布集中在山區州的郡,並轉移到中西部地區。因此,我們認為人口研究應考慮這兩種異質性。
    關聯: Journal of Population Studies (人口學刊), Vol.65, pp.43-84
    資料類型: article
    DOI 連結: https://doi.org/10.6191/JPS.202212_(65).0002
    DOI: 10.6191/JPS.202212_(65).0002
    顯示於類別:[統計學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML141檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋