政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/148844
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113311/144292 (79%)
造訪人次 : 50920637      線上人數 : 962
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/148844


    題名: Toward Text-independent Cross-lingual Speaker Recognition Using English-Mandarin-Taiwanese Dataset
    作者: 吳怡潔;廖文宏
    Wu, Yi-Chieh;Liao, Wen-Hung
    貢獻者: AI中心
    關鍵詞: Speaker recognition;Acoustic features;Text- independent speaker identification;Cross-lingual dataset
    日期: 2021-01
    上傳時間: 2023-12-22 10:30:45 (UTC+8)
    摘要: Over 40% of the world's population is bilingual. Existing speaker identification/verification systems, however, assume the same language type for both enrollment and recognition stages. In this work, we investigate the feasibility of employing multilingual speech for biometric applications. We establish a dataset containing audio recorded in English, Mandarin and Taiwanese. Three acoustic features, namely, i-vector, d-vector and x-vector have been evaluated for both speaker verification (SV) and identification (SI) tasks. Preliminary experimental results indicate that x-vector achieves the best overall performance. Additionally, the model trained with hybrid data demonstrates the highest accuracy, at the cost of extra data collection efforts. In SI tasks, we obtained over 91 % cross-lingual accuracy in all models using 3-second audio. In SV tasks, the EER among cross-lingual test is at most 6.52 %, which is observed on the model trained by English corpus. The outcome suggests the feasibility of adopting cross-lingual speech in building text-independent speaker recognition systems.
    關聯: 2020 25th International Conference on Pattern Recognition, International Association for Pattern Recognition(IAPR)
    資料類型: conference
    DOI 連結: https://doi.org/10.1109/ICPR48806.2021.9412170
    DOI: 10.1109/ICPR48806.2021.9412170
    顯示於類別:[人工智慧跨域研究中心] 會議論文
    [資訊科學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML186檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋