English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50912424      Online Users : 495
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/148844


    Title: Toward Text-independent Cross-lingual Speaker Recognition Using English-Mandarin-Taiwanese Dataset
    Authors: 吳怡潔;廖文宏
    Wu, Yi-Chieh;Liao, Wen-Hung
    Contributors: AI中心
    Keywords: Speaker recognition;Acoustic features;Text- independent speaker identification;Cross-lingual dataset
    Date: 2021-01
    Issue Date: 2023-12-22 10:30:45 (UTC+8)
    Abstract: Over 40% of the world's population is bilingual. Existing speaker identification/verification systems, however, assume the same language type for both enrollment and recognition stages. In this work, we investigate the feasibility of employing multilingual speech for biometric applications. We establish a dataset containing audio recorded in English, Mandarin and Taiwanese. Three acoustic features, namely, i-vector, d-vector and x-vector have been evaluated for both speaker verification (SV) and identification (SI) tasks. Preliminary experimental results indicate that x-vector achieves the best overall performance. Additionally, the model trained with hybrid data demonstrates the highest accuracy, at the cost of extra data collection efforts. In SI tasks, we obtained over 91 % cross-lingual accuracy in all models using 3-second audio. In SV tasks, the EER among cross-lingual test is at most 6.52 %, which is observed on the model trained by English corpus. The outcome suggests the feasibility of adopting cross-lingual speech in building text-independent speaker recognition systems.
    Relation: 2020 25th International Conference on Pattern Recognition, International Association for Pattern Recognition(IAPR)
    Data Type: conference
    DOI 連結: https://doi.org/10.1109/ICPR48806.2021.9412170
    DOI: 10.1109/ICPR48806.2021.9412170
    Appears in Collections:[人工智慧跨域研究中心] 會議論文
    [資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML182View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback