English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51577528      Online Users : 910
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 企業管理學系 > 學位論文 >  Item 140.119/148534
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/148534


    Title: 後疫情時代供應鏈敏捷、韌性與數位化資訊能力對供應鏈營運績效關係之研究
    The research on the relationships among supply chain agility, resilience and digital information capability on supply chain operational performance in the post-pandemic era
    Authors: 王文鹿
    Wang, Wen-Lu
    Contributors: 李易諭
    王文鹿
    Wang, Wen-Lu
    Keywords: COVID-19
    動態能力
    PLS-SEM
    供應鏈敏捷性
    供應鏈韌性
    供應鏈營運績效
    數位化資訊能力
    COVID-19
    Dynamic capabilities
    PLS SEM
    Supply chain agility
    Supply chain resilience
    Supply chain operational performance
    Digital information capability
    Date: 2023
    Issue Date: 2023-12-01 13:52:29 (UTC+8)
    Abstract: 自2019年底起,歷經三年的新冠病毒 COVID-19 大流行,全球秩序產生了劇變。封鎖政策擾亂企業營運,同時也因為消費者的恐慌預期,與在家經濟,使得相關居家產品的需求與供給也產生了變化。在這三年的疫情衝擊之下,企業努力重新配置與強化內部組織與能力,以及和外部供應鏈合作夥伴關係,以應變外部政經與環境與需求變化,所造成企業經營中斷的風險,並且能夠在逆境中成長,脫穎而出。本研究探討了供應鏈發展與供應鏈能力建構的歷史軌跡,並訪談台灣製造業在COVID-19時期,面對供應鏈中斷危機,企業供應鏈策略與作為,以及面對後疫情時代的來臨,企業的策略與行動方向。
    本研究是從企業能力的角度出發,以動態能力為理論基礎之下,將供應鏈敏捷性、供應鏈韌性與數位化資訊能力、三者對供應鏈營運績效影響性建立關係與假說,建立預驗證之結構方程模型。藉由問卷調查方式,收集台灣製造業與物流業的企業經營管理以及各專家的資料,使用SmartPLS 4.0 版PLS-SEM進行量化分析,來驗證所建立的研究模型與假說。結論發現,在疫情時期,面對不預期的外部環境變化,以及供應鏈中斷的風險,供應鏈敏捷性對供應鏈績效的影響性並不顯著。企業需要具備的是供應鏈韌性能力,以內部組織的靈活,快速回應與適應調整,並用穩健的營運作業,對抗外部危機,此供應鏈韌性對供應鏈績效的影響為非常顯著。數位化資訊技術與能力,提升企業各部門和外部供應鏈上下游之間的資訊即時分享、風險偵測與模擬,是企業必須具備的前置能力,除了可以直接對供應鏈績效有正向顯著關係,同時,經由數位資訊能力,正向影響組織供應鏈敏捷以及韌性,在供應鏈敏捷與韌性的中介效果下,可正向提升供應鏈營運績效。
    Since the end of 2019, after three years of the COVID-19 pandemic, the global order has undergone a dramatic transformation. Lockdown policies disrupted business operations, while consumer apprehension and the rise of the stay-at-home economy led to changes in the demand and supply of related household products. In the face of the disruptions, firms have made efforts to reconfigure and strengthen their internal organizational capabilities, as well as their partnerships with external supply chain collaborators to adapt to external political, economic, environmental, and demand changes. This has enabled firms to mitigate the risks of operational interruptions and to thrive in adversity. This research explores the historical trajectory of supply chain development and the construction of supply chain capabilities. It aims to verify relationships among supply chain agility, resilience and digital information capability on supply chain operational performance in the post-pandemic era.
    Starting from the perspective of business capabilities and based on dynamic capabilities theory, this research establishes relationships among three capabilities and six hypotheses on fours constructs under a pre-validated structural equation model. Through questionnaire surveys, data is collected from Taiwan's manufacturing and logistics industries, as well as insights from various experts. Quantitative analysis is conducted bases upon PLS-SEM to validate the research model and hypotheses by tool of SmartPLS 4.0 version.
    The conclusion and findings are that during the pandemic, in the face of unexpected external environmental changes and the risk of supply chain disruptions, the impact of supply chain agility on supply chain performance is not significant. What businesses need is the capability of supply chain resilience, with internal organizational flexibility, rapid response, and adaptation to external crisis. The impact of supply chain resilience on supply chain performance is highly significant. Digital information technology and capabilities enhance the real-time sharing of information, risk detection, and simulation between different departments within the organization and the upstream and downstream of the supply chain. This is a prerequisite capability that businesses must possess and has a positive and significant relationship with supply chain performance. Furthermore, through digital information capabilities, it positively influences the organization's supply chain agility and resilience. Under the mediating effects of supply chain agility and resilience, it positively enhances supply chain operational performance.
    Reference: 于紀隆, & 曾國禓. 2020. 2020 台灣CEO 前瞻大調查: KPMG 安侯建業.
    李淳. 2021. 美國對中政策演變脈絡:從不公平貿易到戰略性競爭關係。 In WTO及RTA中心 (Ed.): 中華經濟研究院.
    林金定, 嚴嘉楓, & 陳美花. 2005. 質性研究方法: 訪談模式與實施步驟分析. 身心障礙研究季刊, 3(2): 122-136.
    胡祐瑄. 2021,世界經濟論壇(WEF) 2021全球風險報告重點整理。風險社會與政策研究中心.
    https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/en-news/1581-0514-2-energytrans.html
    張小玫. 2021. 後疫情時代對產業之挑戰及機遇, Vol. STPI-D-E-PA-109-1: 財團法人國家實驗研究院科技政策研究與資訊中心.
    張益紳, & 邱鈺珊. 2020. COVID-19對台灣產業發展趨勢之影響: Deloitte.
    張騰龍, 陳智忠, 黃明威, & 顧卿華. 2020. 大中華區 人工智慧 成熟度調查.
    陳玉鳳. 2021,全球產業供應鏈重組中。台北市進出口商業同業公會 貿易雜誌 No.356, 2021/02 https://www.ieatpe.org.tw/magazine/ebook356/storypage08.html
    陳添枝, & 顧瑩華. 2020. COVID-19 對全球產業供應鏈的影響及臺灣的挑戰. 經濟前瞻(191): 28-34.
    曾於哲. 2022. 從永續供應鏈角度出發-台灣企業如何因應新冠病毒疫情的衝擊: 安永台灣.
    https://www.ey.com/zh_tw/climate-change-sustainability-services/tackling-covid-19-from-the-perspective-of-supply-chain-sustainability:
    楊書菲, & 顧瑩華. 2021. 亞太區域整合、美中貿易戰及嚴重特殊傳染性肺炎對於臺灣推動新南向政策的影響與因應建議: 財團法人中華經濟研究院.
    廖家宜. 2022. 從天災到人禍頻傳 AI如何打造後疫情韌性供應鏈?: DIGITIMES.
    https://today.line.me/tw/v2/article/aGlqBj2:
    蔡志宏. 2020. 面對疫後新常態-適者為王, DIGI+數位國家.創新經濟, Vol. 第 9 期: 行政院科技會報辦公室.
    謝佩芬, & 龔存宇. 2020. 疫情新常態.啟動產業轉型力: 資策會產業情報所.
    簡春安, & 鄒平儀. 1998. 社會工作與質性研究.
    Aon 公司. 2021, 重塑後疫情時代的風險和韌性之優先順序。
    https://www.aon.com/getmedia/a72ee464-0214-4459-b333-e1f443fb0701/重塑後疫情時代的風險和韌性之優先順序.aspx
    IDC. 2022. IDC公布2023年台灣ICT市場十大趨勢預測.
    PwC 2023. 第26屆全球企業領袖調查報告https://www.pwc.tw/zh/publications/global-insights/26-ceosurvey.html
    Agarwal, A., Shankar, R., & Tiwari, M. 2007. Modeling agility of supply chain. Industrial Marketing Management, 36(4): 443-457.
    Aitken, J., Christopher, M., & Towill, D. 2002. Understanding, implementing and exploiting agility and leanness. International Journal of Logistics, 5(1): 59-74.
    Akyuz, G. A., & Erkan, T. E. 2010. Supply chain performance measurement: a literature review. International Journal of Production Research, 48(17): 5137-5155.
    Allred, C. R., Fawcett, S. E., Wallin, C., & Magnan, G. M. 2011. A dynamic collaboration capability as a source of competitive advantage. Decision Sciences, 42(1): 129-161.
    Ambulkar, S., Blackhurst, J., & Grawe, S. 2015. Firm's resilience to supply chain disruptions: Scale development and empirical examination. Journal of Operations Management, 33: 111-122.
    Anderson, J. C., & Gerbing, D. W. 1988. Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3): 411.
    ASCM. 2020. ASCM Supply Chain Operations Reference Model- Digital Standard Version 13, Vol. 13: Association for Supply Chain Management, APIC
    ASCM. 2022. ASCM Supply Chain Operations Reference Model-Digital Standard Version 14, Vol. 14: Association Supply Chain Management, APICS.
    Aslam, H., Khan, A. Q., Rashid, K., & Rehman, S. U. 2020. Achieving supply chain resilience: the role of supply chain ambidexterity and supply chain agility. Journal of Manufacturing Technology Management, 31(6): 1185-1204.
    Attia, A., & Eldin, I. 2018. Organizational learning, knowledge management capability and supply chain management practices in the Saudi food industry. Journal of Knowledge Management, 22: 1217-1242.
    Auschitzky, E., Hammer, M., & Rajagopaul, A. 2014. How big data can improve manufacturing, McKinsey & Company, Vol. 822: McKinsey & Company.
    Aydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen, D. 2019. Business analytics and firm performance: The mediating role of business process performance. Journal of Business Research, 96: 228-237.
    Azadegan, A., & Dooley, K. J. 2010. Supplier innovativeness, organizational learning styles and manufacturer performance: An empirical assessment. Journal of Operations Management, 28(6): 488-505.
    Büyüközkan, G., & Göçer, F. 2018. Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97: 157-177.
    Baah, C., Opoku Agyeman, D., Acquah, I. S. K., Agyabeng-Mensah, Y., Afum, E., Issau, K., Ofori, D., & Faibil, D. 2022. Effect of information sharing in supply chains: understanding the roles of supply chain visibility, agility, collaboration on supply chain performance. Benchmarking: An International Journal, 29(2): 434-455.
    Barney, J. 1991. Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1): 99-120.
    Barratt, M., & Oke, A. 2007. Antecedents of supply chain visibility in retail supply chains: a resource-based theory perspective. Journal of Operations Management, 25(6): 1217-1233.
    Barykin, S. Y., Bochkarev, A. A., Kalinina, O. V., & Yadykin, V. K. 2020. Concept for a Supply Chain Digital Twin. International Journal of Mathematical, Engineering and Management Sciences, 5(6): 1498-1515.
    Beamon, B. M. 1999. Measuring supply chain performance. International Journal of Operations & Production Management, 19(3): 275-292.
    Bessant, J., Knowles, D., Briffa, G., & Francis, D. 2002. Developing the agile enterprise. International Journal of Technology Management, 24(5-6): 484-497.
    Bhamra, R., Dani, S., & Burnard, K. 2011. Resilience: the concept, a literature review and future directions. International Journal of Production Research, 49(18): 5375-5393.
    Bharadwaj, A. S., Bharadwaj, S. G., & Konsynski, B. R. 1999. Information technology effects on firm performance as measured by Tobin's q. Management Science, 45(7): 1008-1024.
    Blome, C., Schoenherr, T., & Eckstein, D. 2014. The impact of knowledge transfer and complexity on supply chain flexibility: A knowledge-based view. International Journal of Production Economics, 147: 307-316.
    Blome, C., Schoenherr, T., & Rexhausen, D. 2013. Antecedents and enablers of supply chain agility and its effect on performance: a dynamic capabilities perspective. International Journal of Production Research, 51(4): 1295-1318.
    Brandon‐Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. 2014. A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. Journal of Supply Chain Management, 50(3): 55-73.
    Braunscheidel, M. J., & Suresh, N. C. 2009. The organizational antecedents of a firm’s supply chain agility for risk mitigation and response. Journal of Operations Management, 27(2): 119-140.
    Brende, B., & Sternfels, B. 2022. Resilience for sustainable, inclusive growth. World Economic Forum: Mckinsey & Company.
    Burgos, D., & Ivanov, D. 2021. Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions. Transportation Research Part E: Logistics and Transportation Review, 152: 102412.
    Byrne, B. M. 1994. Burnout: Testing for the validity, replication, and invariance of causal structure across elementary, intermediate, and secondary teachers. American Educational Research Journal, 31(3): 645-673.
    Cachon, G. P., & Fisher, M. 2000. Supply chain inventory management and the value of shared information. Management Science, 46(8): 1032-1048.
    Camisón, C., & Forés, B. 2010. Knowledge absorptive capacity: New insights for its conceptualization and measurement. Journal of Business Research, 63(7): 707-715.
    Cao, M., & Zhang, Q. (2011). Supply chain collaboration: Impact on collaborative advantage and firm performance. Journal of Operations Management, 29(3), 163-180.
    Caridi, M., Moretto, A., Perego, A., & Tumino, A. 2014. The benefits of supply chain visibility: A value assessment model. International Journal of Production Economics, 151: 1-19.
    Chatterjee, S., Chaudhuri, R., Shah, M., & Maheshwari, P. 2022. Big data driven innovation for sustaining SME supply chain operation in post COVID-19 scenario: Moderating role of SME technology leadership. Computers & Industrial Engineering 168: 108058.
    Chen, D. Q., Mocker, M., Preston, D. S., & Teubner, A. 2010. Information systems strategy: reconceptualization, measurement, and implications. MIS quarterly: 233-259.
    Chen, H., Chiang, R. H., & Storey, V. C. 2012. Business intelligence and analytics: From big data to big impact. MIS quarterly: 1165-1188.
    Chen, Z., & Huang, L. 2021. Digital twins for information-sharing in remanufacturing supply chain: A review. Energy, 220: 119712.
    Chesbrough, H. 2020. To recover faster from Covid-19, open up: Managerial implications from an open innovation perspective. Industrial Marketing Management, 88: 410-413.
    Chin, W. W. 1998. The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2): 295-336.
    Choi, T. Y., & Yunsook, H. 2002. Unveiling the structure of supply networks: case studies in Honda, Acura, and DaimlerChrysler. Journal of Operations Management, 20(5): 469-493.
    Chopra, S., & Sodhi, M. S. 2004. Managing Risk To Avoid Supply-Chain Breakdown. MIT Sloan Management Review, 46(1): 53-62.
    Chowdhury, M. M. H., Quaddus, M., & Agarwal, R. 2019. Supply chain resilience for performance: role of relational practices and network complexities. Supply Chain Management-an International Journal, 24(5): 659-676.
    Christopher, M. 2000. The agile supply chain: Competing in volatile markets. Industrial Marketing Management, 29(1): 37-44.
    Christopher, M., & Holweg, M. 2017. Supply chain 2.0 revisited: a framework for managing volatility-induced risk in the supply chain. International Journal of Physical Distribution & Logistics Management, 47: 2-17.
    Christopher, M., & Peck, H. 2004. Building the Resilient Supply Chain. International Journal of Logistics Management, 15(2): 1-13.
    Churchill Jr, G. A. 1979. A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1): 64-73.
    Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences: Academic press.
    Cooper, M. C., Lambert, D. M., & Pagh, J. D. 1997. Supply chain management: more than a new name for logistics. The International Journal of Logistics Management, 8(1): 1-14.
    Devaraj, S., Krajewski, L., & Wei, J. C. 2007. Impact of eBusiness technologies on operational performance: the role of production information integration in the supply chain. Journal of Operations Management, 25(6): 1199-1216.
    Dolgui, A., Ivanov, D., & Sokolov, B. 2017. Ripple effect in the supply chain: an analysis and recent literature. International Journal of Production Research, 56: 1-17.
    Doll, B., & Lyon, M. A. 1998. Risk and resilience: Implications for the delivery of educational and mental health services in schools. School Psychology Review, 27(3): 348-363.
    Dove, R. 1999. Knowledge management, response ability, and the agile enterprise. Journal of Knowledge Management, 3(1): 18-35.
    Dubey, R., Altay, N., Gunasekaran, A., Blome, C., Papadopoulos, T., & Childe, S. J. 2018. Supply chain agility, adaptability and alignment Empirical evidence from the Indian auto components industry. International Journal of Operations & Production Management, 38(1): 129-148.
    Dubey, R., Bryde, D. J., Foropon, C., Tiwari, M., Dwivedi, Y., & Schiffling, S. 2020. An investigation of information alignment and collaboration as complements to supply chain agility in humanitarian supply chain. International Journal of Production Research, 59(5): 1586-1605.
    Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. 2019. Big Data and Predictive Analytics and Manufacturing Performance: Integrating Institutional Theory, Resource‐Based View and Big Data Culture. British Journal of Management, 30(2): 341-361.
    Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. 2016. The impact of big data on world-class sustainable manufacturing. The International Journal of Advanced Manufacturing Technology, 84: 631-645.
    Dutta, D., & Bose, I. 2015. Managing a big data project: the case of ramco cements limited. International Journal of Production Economics, 165: 293-306.
    Eckstein, D., Goellner, M., Blome, C., & Henke, M. 2015. The performance impact of supply chain agility and supply chain adaptability: the moderating effect of product complexity. International Journal of Production Research, 53(10): 3028-3046.
    Eisenhardt, K. M., & Martin, J. A. 2000. Dynamic capabilities: what are they? Strategic Management Journal, 21(10-11): 1105-1121.
    Erol, O., Sauser, B. J., & Mansouri, M. 2010. A framework for investigation into extended enterprise resilience. Enterprise Information Systems, 4(2): 111-136.
    Fawcett, S. E., Osterhaus, P., Magnan, G. M., Brau, J. C., & McCarter, M. W. 2007. Information sharing and supply chain performance: the role of connectivity and willingness. Supply Chain Management-an International Journal, 12(5): 358-368.
    Fawcett, S. E., Wallin, C., Allred, C., Fawcett, A. M., & Magnan, G. M. 2011. Information Technology as an Enabler of Supply Chain Collaboration: A Dynamic-Capabilities Perspective. Journal of Supply Chain Management, 47(1): 38-59.
    Fayezi, S., & Zomorrodi, M. 2015. The role of relationship integration in supply chain agility and flexibility development An Australian perspective. Journal of Manufacturing Technology Management, 26(8): 1126-1157.
    Fayezi, S., Zutshi, A., & O'Loughlin, A. 2015. How Australian manufacturing firms perceive and understand the concepts of agility and flexibility in the supply chain. International Journal of Operations & Production Management, 35(2): 246-281.
    Fayezi, S., Zutshi, A., & O'Loughlin, A. 2017. Understanding and Development of Supply Chain Agility and Flexibility: A Structured Literature Review. International Journal of Management Reviews, 19(4): 379-407.
    Feizabadi, J., Maloni, M., & Gligor, D. 2019. Benchmarking the triple-A supply chain: orchestrating agility, adaptability, and alignment. Benchmarking: An International Journal, 26(1): 271-295.
    Forde, M. 2020. ISM: Lead times are up 200% or more across the world: https://www.supplychaindive.com/news/coronavirus-ism-lead-times-supply-chains/576070/. Supply Chain Dive.
    Fornell, C., & Larcker, D. F. 1981. Structural equation models with unobservable variables and measurement error: Algebra and statistics: Sage Publications Sage CA: Los Angeles, CA.
    Ganesh Kumar, C., & Nambirajan, T. 2013. An Integrated Model for Supply Chain Management Components, Supply Chain Performance and Organizational Performance: Purification and Validation of a Measurement Instrument. Journal of Contemporary Management Research, 8(2): 37-56.
    Gang, L., Yi, L., Shouyang, W., & Hong, Y. 2006. Enhancing agility by timely sharing of supply information. Supply Chain Management, 11(5): 425-435.
    Garay-Rondero, C. L., Martinez-Flores, J. L., Smith, N. R., Caballero Morales, S. O., & Aldrette-Malacara, A. 2020. Digital supply chain model in Industry 4.0. Journal of Manufacturing Technology Management, 31(5): 887-933.
    Garmezy, N. 1993. Children in poverty: Resilience despite risk. Psychiatry, 56(1): 127-136.
    Geisser, S. 1974. A predictive approach to the random effect model. Biometrika, 61(1): 101-107.
    Ghadge, A., Dani, S., & Kalawsky, R. 2012. Supply chain risk management: present and future scope. International Journal of Logistics Management, 23(3): 313-339.
    Gligor, D., Feizabadi, J., Russo, I., Maloni, M. J., & Goldsby, T. J. 2020. The triple-a supply chain and strategic resources: developing competitive advantage. International Journal of Physical Distribution & Logistics Management, 50(2): 159-190.
    Gligor, D., Gligor, N., Holcomb, M., & Bozkurt, S. 2019. Distinguishing between the concepts of supply chain agility and resilience: A multidisciplinary literature review. International Journal of Logistics Management, 30(2): 467-487.
    Gligor, D. M., Esmark, C. L., & Holcomb, M. C. 2015. Performance outcomes of supply chain agility: when should you be agile? Journal of Operations Management, 33: 71-82.
    Gligor, D. M., & Holcomb, M. C. 2012. Antecedents and consequences of supply chain agility: establishing the link to firm performance. Journal of Business Logistics, 33(4): 295-308.
    Goldman, S. L., Nagel, R. N., & Preiss, K. 1995. Agile competitors and virtual organizations strategies for enriching the customer. New York: Van Nostrand Reinhold.
    Größler, A., & Grübner, A. 2006. An empirical model of the relationships between manufacturing capabilities. International Journal of Operations & Production Management.
    Grant, R. M. 1991. The resource-based theory of competitive advantage: implications for strategy formulation. California Management Review, 33(3): 114-135.
    Gunasekaran, A. 1998. Agile manufacturing: enablers and an implementation framework. International Journal of Production Research, 36(5): 1223-1247.
    Gunasekaran, A. 1999. Agile manufacturing: a framework for research and development. International Journal of Production Economics, 62(1-2): 87-105.
    Gunasekaran, A., & Kobu, B. 2007. Performance measures and metrics in logistics and supply chain management: a review of recent literature (1995–2004) for research and applications. International Journal of Production Research, 45(12): 2819-2840.
    Gunasekaran, A., Lai, K.-h., & Cheng, T. E. 2008. Responsive supply chain: a competitive strategy in a networked economy. Omega, 36(4): 549-564.
    Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. 2017a. Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70: 308-317.
    Gunasekaran, A., Patel, C., & McGaughey, R. E. 2004b. A framework for supply chain performance measurement. International Journal of Production Economics, 87(3): 333-347.
    Gunasekaran, A., Subramanian, N., & Rahman, S. 2017b. Improving supply chain performance through management capabilities. Production Planning & Control, 28(6-8): 473-477.
    Gupta, M., & George, J. F. 2016. Toward the development of a big data analytics capability. Information & Management, 53(8): 1049-1064.
    Hair, J. F., Howard, M. C., & Nitzl, C. 2020. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109: 101-110.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. 2011. PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139-152.
    Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. 2019. When to use and how to report the results of PLS-SEM. European Business Review, 31(1): 2-24.
    Harrison, A., & van Hoek, R. I. 2008. Logistics Management and Strategy: Competing Through the Supply Chain, 3rd edition ed.: 203-229: Prentice Hall Financial Times.
    Hausman, W. H. 2004. Supply chain performance metrics. The Practice of Supply Chain Management: 62-73.
    Henseler, J., Ringle, C. M., & Sarstedt, M. 2015. A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43: 115-135.
    Henseler, J., Ringle, C. M., & Sinkovics, R. R. 2009. The use of partial least squares path modeling in international marketing, New Challenges to International Marketing: Emerald Group Publishing Limited.
    Hines, T. 2013. Supply Chain Strategies : Demand driven and customer focused. Routledge.
    Hippold, S. 2020. Coronavirus: How to Secure Your Supply Chain: Gartner https://www.gartner.com/smarterwithgartner/coronavirus-how-to-secure-your-supply-chain
    Hitt, M. A., Bierman, L., Shimizu, K., & Kochhar, R. 2001. Direct and moderating effects of human capital on strategy and performance in professional service firms: A resource-based perspective. Academy of Management Journal, 44(1): 13-28.
    Ho, W., Zheng, T., Yildiz, H., & Talluri, S. 2015. Supply chain risk management: a literature review. International Journal of Production Research, 53(16): 5031-5069.
    Holcomb, M. C., Ponomarov, S. Y., & Manrodt, K. B. 2011. The Relationship of Supply Chain Visibility to Firm Performance. Supply Chain Forum: An International Journal, 12(2): 32-45.
    Holling, C. S. 1973. Resilience and stability of ecological systems. Annual review of Ecology and Systematics, 4(1): 1-23.
    Hosseini, S., Ivanov, D., & Dolgui, A. 2019. Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E: Logistics and Transportation Review, 125: 285-307.
    Hsiao-Lan, W., & Wang, E. T. G. 2010. The strategic value of supply chain visibility: increasing the ability to reconfigure. European Journal of Information Systems, 19(2): 238-249.
    Hulland, J. 1999. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2): 195-204.
    Inman, R. A., & Green, K. W. 2022. Environmental uncertainty and supply chain performance: the effect of agility. Journal of Manufacturing Technology Management, 33(2): 239-258.
    Inman, R. A., Sale, R. S., Green Jr, K. W., & Whitten, D. 2011. Agile manufacturing: relation to JIT, operational performance and firm performance. Journal of Operations Management, 29(4): 343-355.
    Irfan, M., Wang, M., & Akhtar, N. 2019a. Enabling supply chain agility through process integration and supply flexibility. Asia Pacific Journal of Marketing and Logistics, 32(2): 519-547.
    Irfan, M., Wang, M., & Akhtar, N. 2019b. Impact of IT capabilities on supply chain capabilities and organizational agility: a dynamic capability view. Operations Management Research, 12(3-4): 113-128.
    Ivanov, D. 2022. Viable supply chain model: integrating agility, resilience and sustainability perspectives-lessons from and thinking beyond the COVID-19 pandemic. Annals of Operations Research, 319(1): 1411-1431.
    Ivanov, D., & Dolgui, A. 2020. Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10): 2904-2915.
    Ivanov, D., & Dolgui, A. 2021a. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9): 775-788.
    Ivanov, D., & Dolgui, A. 2021b. OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. International Journal of Production Economics, 232: 107921.
    Ivanov, D., Dolgui, A., & Sokolov, B. 2019. The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3): 829-846.
    Ivanov, D., Pavlov, A., & Sokolov, B. 2014. Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2): 758-770.
    Jüttner, U., & Maklan, S. 2011. Supply chain resilience in the global financial crisis: an empirical study. Supply Chain Management, 16(4): 246-259.
    Kegenbekov, Z., & Jackson, I. 2021. Adaptive Supply Chain: Demand–Supply Synchronization Using Deep Reinforcement Learning. Algorithms, 14(8): 240.
    Kennerley, M., & Neely, A. 2003. Measuring performance in a changing business environment. International Journal of Operations & Production Management, 23(2): 213-229.
    Kidd, P. T. 1995. Agile Manufacturing: Forging New Frontiers: Addison-Wesley Longman Publishing Co., Inc.
    Kim, D., Cavusgil, S. T., & Calantone, R. J. 2006. Information System Innovations and Supply Chain Management: Channel Relationships and Firm Performance. Journal of the Academy of Marketing Science, 34(1): 40-54.
    Kim, K. K., Ryoo, S. Y., & Jung, M. D. 2011. Inter-organizational information systems visibility in buyer–supplier relationships: The case of telecommunication equipment component manufacturing industry. Omega, 39(6): 667-676.
    Knight, C. 2007. A resilience framework: perspectives for educators. Health Education, 107(6): 543-555.
    Kocaoğlu, B., Gülsün, B., & Tanyaş, M. 2013. A SCOR based approach for measuring a benchmarkable supply chain performance. Journal of Intelligent Manufacturing.
    Kähkönen, A.-K., Evangelista, P., Hallikas, J., Immonen, M., & Lintukangas, K. 2021. COVID-19 as a trigger for dynamic capability development and supply chain resilience improvement. International Journal of Production Research: 1-20.
    Kulik, B. 2020. COVID-19: A black swan event for the semiconductor industry? Deloitte. https://www.deloitte.com/global/en/issues/resilience/a-black-swan-event-for-the-semiconductor-industry-covid-19.html
    Lambert, D., Stock, J. R., & Ellram, L. M. 1998. Fundamentals of Logistics Management: McGraw-Hill/Irwin.
    Lee, H., Kim, M. S., & Kim, K. K. 2014. Interorganizational information systems visibility and supply chain performance. International Journal of Information Management, 34(2): 285-295.
    Lee, H. L. 2004. The triple-A supply chain. Harvard Business Review, 82(10): 102-113.
    Lee, H. L., & Whang, S. 2000. Information sharing in a supply chain. International Journal of Manufacturing Technology and Management, 1(1): 79-93.
    Lee, H. L., & Whang, S. 2004. E-business and supply chain integration: 123-138: Stanford Global Supply Chain Management Forum.
    Lee, S. M., & Rha, J. S. 2016. Ambidextrous supply chain as a dynamic capability: building a resilient supply chain. Management Decision, 54(1): 2-23.
    Lee, S. M., Rha, J. S., Choi, D., & Noh, Y. 2013. Pressures affecting green supply chain performance. Management Decision.
    Lee, W. B., & Lau, H. C. W. 1999. Factory on demand: the shaping of an agile production network. International Journal of Agile Management Systems, 1(2): 83-87.
    Leonard, D. 1992. Core Capability and Core Rigidities: A Paradox in Managing New Product Development. Strategic Management Journal, 13: 111-125.
    Li, S., & Lin, B. 2006. Accessing information sharing and information quality in supply chain management. Decision support systems, 42(3): 1641-1656.
    Lin, C.-T., Chiu, H., & Chu, P.-Y. 2006. Agility index in the supply chain. International Journal of Production Economics, 100(2): 285-299.
    Liu, H., Ke, W., Wei, K. K., & Hua, Z. 2013. The impact of IT capabilities on firm performance: The mediating roles of absorptive capacity and supply chain agility. Decision Support Systems, 54(3): 1452-1462.
    Lu, Y., & Ramamurthy, K. 2011. Understanding the link between information technology capability and organizational agility: An empirical examination MIS Quarterly, 35(4): 931-954.
    Luís Oswaldo Rodríguez, M., Guaita-Pradas, I., & Marques-Perez, I. 2022. Measuring the Supply Chain Performance of the Floricultural Sector Using the SCOR Model and a Multicriteria Decision-Making Method. Horticulturae, 8(2): 168.
    Müller, J. M. 2019. Business model innovation in small-and medium-sized enterprises: Strategies for industry 4.0 providers and users. Journal of Manufacturing Technology Management, 30(8): 1127-1142.
    Müllner, J., & Filatotchev, I. 2018. The Changing Face of International Business in the Information Age. In R. van Tulder, A. Verbeke, & L. Piscitello (Eds.), International Business in the Information and Digital Age, Vol. 13: 91-121: Emerald Publishing Limited.
    MacCarthy, B. L., Blome, C., Olhager, J., Srai, J. S., & Zhao, X. 2016. Supply chain evolution – theory, concepts and science. International Journal of Operations & Production Management, 36(12): 1696-1718.
    Makkonen, H., & Vuori, M. 2014. The role of information technology in strategic buyer–supplier relationships. Industrial Marketing Management, 43(6): 1053-1062.
    Mandal, S. 2018. An examination of the importance of big data analytics in supply chain agility development: A dynamic capability perspective. Management Research Review, 41: 1201-1219.
    Manyena, B., O'Brien, G., O'Keefe, P., & Rose, J. 2011. Disaster resilience: a bounce back or bounce forward ability? Local Environment: The International Journal of Justice and Sustainability, 16(5): 417-424.
    Marken, G. A. 2001. Living on the Fault Line: Managing for Shareholder Value in the Age of the Internet. Public Relations Quarterly, 46(3): 6-8.
    Marmolejo-Saucedo, J. A., Hurtado-Hernandez, M., & Suarez-Valdes, R. 2020. Digital Twins in Supply Chain Management: A Brief Literature Review. Paper presented at the Intelligent Computing and Optimization, Cham.
    Martin, C., & Towill, D. R. 2000. Supply chain migration from lean and functional to agile and customised. Supply Chain Management: an International Journal, 5: 206-213.
    Marwick, A. D. 2001. Knowledge management technology. IBM Systems Journal, 40(4): 814-830.
    Mason-Jones, R., & Towill, D. R. 1999. Total cycle time compression and the agile supply chain. International Journal of Production Economics, 62: 61-73.
    McCormack, K., Bronzo Ladeira, M., & Paulo Valadares de Oliveira, M. 2008. Supply chain maturity and performance in Brazil. Supply Chain Management: An International Journal, 13(4): 272-282.
    McManus, S., Seville, E., Brunsden, D., & Vargo, J. 2007. Resilience management: a framework for assessing and improving the resilience of organisations. Resilient Organisations Research Report.
    Meso, P., & Smith, R. 2000. A resource‐based view of organizational knowledge management systems. Journal of Knowledge Management, 4(3): 224-234.
    Moosavi, J., & Hosseini, S. 2021. Simulation-based assessment of supply chain resilience with consideration of recovery strategies in the COVID-19 pandemic context. Computers & Industrial Engineering, 160: 107593.
    Moshood, T. D., Nawanir, G., Sorooshian, S., & Okfalisa, O. 2021. Digital twins driven supply chain visibility within logistics: a new paradigm for future logistics. Applied System Innovation, 4(2): 29.
    Mouritsen, J., Hansen, A., & Hansen, C. Ø. 2001. Inter-organizational controls and organizational competencies: episodes around target cost management /functional analysis and open book accounting. Management Accounting Research, 12(2): 221-244.
    Mussomeli, A., Gish, D., & Laaper, S. 2016. The rise of the digital supply network-Industry 4.0 enables the digital transformation of supply chains: Deloitte University.
    Narasimhan, R., & Das, A. 1999. Manufacturing agility and supply chain management practices Production & Inventory Management Journal, 40(1): 4-10.
    Narasimhan, R., Swink, M., & Kim, S. W. 2006. Disentangling leanness and agility: An empirical investigation. Journal of Operations Management, 24(5): 440-457.
    Naughton, B. 2007. The Chinese Economy: Transitions and Growth: The MIT Press.
    Naylor, J. B., Naim, M. M., & Berry, D. 1999. Leagility: Integrating the lean and agile manufacturing paradigms in the total supply chain. International Journal of Production Economics, 62(1-2): 107-118.
    Neely, A., Gregory, M., & Platts, K. 1995. Performance measurement system design: a literature review and research agenda. International Journal of Operations & Production Management, 15(4): 80-116.
    Overby, E., Bharadwaj, A., & Sambamurthy, V. 2005. A Framework for Enterprise Agility and the Enabling Role of Digital Options. Paper presented at the Business Agility and Information Technology Diffusion: IFIP TC8 WG 8.6 International Working Conference May 8–11, 2005, Atlanta, Georgia, USA.
    Papadakis, I. S. 2006. Financial performance of supply chains after disruptions: an event study. Supply Chain Management: An International Journal, 11(1): 25-33.
    Park, K. 2011. Flexible and Redundant Supply Chain Practices to Build Strategic Supply Chain Resilience: Contingent and Resource-Based Perspectives. The University of Toledo.
    Paul, S. K., & Chowdhury, P. 2021. A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. International Journal of Physical Distribution & Logistics Management, 51(2): 104-125.
    Pettit, T. J., Croxton, K. L., & Fiksel, J. 2013. Ensuring supply chain resilience: development and implementation of an assessment tool. Journal of Business Logistics, 34(1): 46-76.
    Pettit, T. J., Fiksel, J., & Croxton, K. L. 2010. Ensuring supply chain resilience: development of a conceptual framework. Journal of Business Logistics, 31(1): 1-21.
    Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. 2003. Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5): 879-903.
    Ponomarov, S. 2012. Antecedents and Consequences of Supply Chain Resilience: a Dynamic Capabilities Perspective. Unpublished Doctoral, University of Tennessee, Knoxville.
    Ponomarov, S. Y., & Holcomb, M. C. 2009. Understanding the concept of supply chain resilience. International Journal of Logistics Management, 20(1): 124-143.
    Pouloudi, A., & Whitley, E. A. 1997. Stakeholder identification in inter-organizational systems: gaining insights for drug use management systems. European Journal of Information Systems, 6(1): 1-14.
    Purvis, L., Gosling, J., & Naim, M. M. 2014. The development of a lean, agile and leagile supply network taxonomy based on differing types of flexibility. International Journal of Production Economics, 151: 100-111.
    Qi, Y., Boyer, K. K., & Zhao, X. 2009. Supply chain strategy, product characteristics, and performance impact: evidence from Chinese manufacturers. Decision Sciences, 40(4): 667-695.
    Qrunfleh, S., & Tarafdar, M. 2014. Supply chain information systems strategy: Impacts on supply chain performance and firm performance. International Journal of Production Economics, 147: 340-350.
    Queiroz, M. M., & Telles, R. 2018. Big data analytics in supply chain and logistics: an empirical approach. The International Journal of Logistics Management, 29: 767-783.
    Radjou, N. 2003. US manufacturers' supply chain mandate. World Trade, 16(12): 42-46.
    Rai, A., Patnayakuni, R., & Seth, N. 2006. Firm performance impacts of digitally enabled supply chain integration capabilities. MIS Quarterly, 30(2): 225-246.
    Raj Sinha, P., Whitman, L. E., & Malzahn, D. 2004. Methodology to mitigate supplier risk in an aerospace supply chain. Supply Chain Management: An International Journal, 9(2): 154-168.
    Rajaguru, R., & Matanda, M. J. 2013. Effects of inter-organizational compatibility on supply chain capabilities: Exploring the mediating role of inter-organizational information systems (IOIS) integration. Industrial Marketing Management, 42(4): 620-632.
    Rashed, C. A. A., Azeem, A., & Halim, Z. 2010. Effect of information and knowledge sharing on supply chain performance: a survey based approach. Journal of Operations and Supply Chain Management, 3(2): 61-77.
    Rice, J. B., Jr., & Caniato, F. 2003. Building a secure and resilient supply network. Supply Chain Management Review, 7(5): 22-30.
    Rimienė, K. 2011. Supply chain agility concept evolution (1990-2010). Economics & Management, 16: 862-899.
    Roulston, K., DeMarrais, K., & Lewis, J. B. 2003. Learning to interview in the social sciences. Qualitative Inquiry, 9(4): 643-668.
    Rutter, M. 1993. Resilience: some conceptual considerations. Journal of Adolescent Health, 14: 626-631.
    Sabherwal, R., & Chan, Y. E. 2001. Alignment Between Business and IS Strategies: A Study of Prospectors, Analyzers, and Defenders. Information Systems Research, 12(1): 11-33.
    Sahebjamnia, N., Torabi, S. A., & Mansouri, A. 2017. Building organizational resilience in the face of multiple disruptions. International Journal of Production Economics, 197: 63-68.
    Sambamurthy, V., Bharadwaj, A., & Grover, V. 2003. Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms. MIS quarterly: 237-263.
    Sarkis, J. 2001. Benchmarking for agility. Benchmarking: An International Journal, 8: 88-107.
    Sarkis, J., Cohen, M. J., Dewick, P., & Schröder, P. 2020. A brave new world: Lessons from the COVID-19 pandemic for transitioning to sustainable supply and production. Resour Conserv Recycl, 159: 104894.
    Schindler, D. R. C. P. S. 2003. Business research methods: McGraw Hill International Edition, Statistics and Probability series.
    Schoenherr, T., & Swink, M. 2012. Revisiting the arcs of integration: Cross-validations and extensions. Journal of Operations Management, 30(1): 99-115.
    Sellitto, M. A., Pereira, G. M., & Borchardt, M. 2015. A SCOR-based model for supply chain performance measurement: application in the footwear industry. International Journal of Production Research.
    Sharifi, H., Colquhoun, G., Barclay, I., & Dann, Z. 2001. Agile manufacturing: A management and operational framework. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(6): 857-869.
    Sharifi, H., Ismail, H. S., & Reid, I. 2006. Achieving agility in supply chain through simultaneous “design of” and “design for” supply chain. Journal of Manufacturing Technology Management, 17: 1078-1098.
    Sharifi, H., & Zhang, Z. 1999. A methodology for achieving agility in manufacturing organisations: An introduction. International Journal of Production Economics, 62(1): 7-22.
    Sheffi, Y., & Rice Jr, J. B. 2005. A Supply Chain View of the Resilient Enterprise. MIT Sloan Management Review, 47(1): 41-48.
    Sheremata, W. A. 2000. Centrifugal and Centripetal Forces in Radical New Product Development under Time Pressure. The Academy of Management Review, 25(2): 389-408.
    Sherman, E. 2020. 94% of the Fortune 1000 are seeing coronavirus supply chain disruptions: Report: https://fortune.com/2020/2002/2021/fortune-1000-coronavirus-china-supply-chain-impact/. Fortune.
    Sáenz, M. J., & Revilla, E. 2014. Creating more resilient supply chains. MIT Sloan Management Review, 55: 22-24.
    Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. 2016. Structural quantification of the ripple effect in the supply chain. International Journal of Production Research, 54(1): 152-169.
    Souchet, S., & McDonald, G. 2022. The CEO view: Supply chain resiliency helps achieve a twin transformation: KPMG International, Global Manufacturing Prospects 2022 https://kpmg.com/xx/en/home/insights/2022/2001/global-manufacturing-prospects-2022.html
    Srai, J. S., & Lorentz, H. 2019. Developing design principles for the digitalisation of purchasing and supply management. Journal of Purchasing and Supply Management, 25(1): 78-98.
    Srinivasan, R., & Swink, M. 2018. An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10): 1849-1867.
    Stadtler, H. 2005. Supply chain management and advanced planning––basics, overview and challenges. European Journal of Operational Research, 163(3): 575-588.
    Stevenson, M., & Spring, M. 2007. Flexibility from a supply chain perspective: definition and review. International Journal of Operations & Production Management, 27(7): 685-713.
    Stone, M. 1974. Cross‐validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2): 111-133.
    Svensson, G. 2000. A conceptual framework for the analysis of vulnerability in supply chains. International Journal of Physical Distribution & Logistics Management, 30(9): 731-750.
    Swafford, P. M., Ghosh, S., & Murthy, N. 2006. The antecedents of supply chain agility of a firm: scale development and model testing. Journal of Operations management, 24(2): 170-188.
    Swafford, P. M., Ghosh, S., & Murthy, N. 2008. Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics, 116(2): 288-297.
    Tang, C. S. 2006. Robust strategies for mitigating supply chain disruptions. International Journal of Logistics: Research and Applications, 9(1): 33-45.
    Tarigan, Z., Mochtar, J., Basana, S., & Siagian, H. 2021a. The effect of competency management on organizational performance through supply chain integration and quality. Uncertain Supply Chain Management, 9(2): 283-294.
    Tarigan, Z. J. H., Siagian, H., & Jie, F. 2021b. Impact of internal integration, supply chain partnership, supply chain agility, and supply chain resilience on sustainable advantage. Sustainability, 13: 5460.
    Teece, D. 2012. Dynamic Capabilities: Routines versus Entrepreneurial Action. Journal of Management Studies, 49: 1395-1401.
    Teece, D. J. 2007. Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13): 1319-1350.
    Teece, D. J. 2018. Business models and dynamic capabilities. Long Range Planning, 51(1): 40-49.
    Teece, D. J., Pisano, G., & Shuen, A. 1997. Dynamic Capabilities and Strategic Management. Strategic Management Journal, 18(7): 509-533.
    Thompson, A. 2020. Pandemic culture part 2: The new essentials, DHL. https://www.dhltaiwanconnects.com/blog/covid19-hot-sell-product
    Timmerman, P. 1981. Vulnerability, resilience and the collapse ofsociety. A Review of Models and Possible Climatic Applications. Institute for Environmental Studies, University of Toronto, Toronto, Canada., 1: 309-407.
    Truong Quang, H., & Hara, Y. 2018. Risks and performance in supply chain: the push effect. International Journal of Production Research, 56(4): 1369-1388.
    Tu, M. 2018. An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management: A mixed research approach. The International Journal of Logistics Management, 29: 131-151.
    Tu, Q., Vonderembse, M. A., Ragu-Nathan, T., & Sharkey, T. W. 2006. Absorptive capacity: Enhancing the assimilation of time-based manufacturing practices. Journal of Operations Management, 24(5): 692-710.
    Tukamuhabwa, B., Stevenson, M., & Busby, J. 2017. Supply chain resilience in a developing country context: a case study on the interconnectedness of threats, strategies and outcomes. Supply Chain Management: An International Journal, 22(6): 486-505.
    Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. 2015. Supply chain resilience: definition, review and theoretical foundations for further study. International Journal of Production Research, 53(18): 5592-5623.
    UNISDR. 2005. Building the resilience of nations and communities to disaster: An introduction to the Hyogo Framework for Action: UNISDR Geneva.
    Van Hoek, R. I., Harrison, A., & Christopher, M. 2001. Measuring agile capabilities in the supply chain. International Journal of Operations & Production Management, 21: 126-147.
    Vickery, S., Droge, C., Setia, P., & Sambamurthy, V. 2010. Supply chain information technologies and organisational initiatives: complementary versus independent effects on agility and firm performance. International Journal of Production Research, 48(23): 7025-7042.
    Voirin, F. 2023. The dark side of Agility: How it could be damaging your business.
    https://www.linkedin.com/pulse/dark-side-agility-how-could-damaging-your-business-frederic-voirin/?originalSubdomain=fr
    Vonderembse, M. A., Uppal, M., Huang, S. H., & Dismukes, J. P. 2006. Designing supply chains: Towards theory development. International Journal of Production Economics, 100(2): 223-238.
    Walter, J. 2004. World disasters report 2004: Focus on community resilience: Kumarian.
    Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J.-f., Dubey, R., & Childe, S. J. 2017. Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70: 356-365.
    Wang, C. L., & Ahmed, P. K. 2007. Dynamic capabilities: A review and research agenda. International journal of management reviews, 9(1): 31-51.
    Wang, C. L., Ahmed, P. K., & Rafiq, M. 2008. Knowledge management orientation: construct development and empirical validation. European Journal of Information Systems, 17(3): 219-235.
    Wang, E., Klein, G., & Jiang, J. J. 2007. IT support in manufacturing firms for a knowledge management dynamic capability link to performance. International Journal of Production Research, 45(11): 2419-2434.
    Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. 2016. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176: 98-110.
    Wang, G., Huang, S. H., & Dismukes, J. P. 2004. Product-driven supply chain selection using integrated multi-criteria decision-making methodology. International Journal of Production Economics, 91(1): 1-15.
    Wang, J., & Zhang, J. 2016. Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. International Journal of Production Research, 54(23): 7231-7244.
    Whitten, G., Green, K., & Zelbst, P. 2012. Triple-A Supply Chain Performance. International Journal of Operations & Production Management, 32: 28-48.
    Wieland, A., & Wallenburg, C. M. 2013. The influence of relational competencies on supply chain resilience: a relational view. International Journal of Physical Distribution & Logistics Management, 43: 300-320.
    Wiklund, J. 1999. The sustainability of the entrepreneurial orientation—performance relationship. Entrepreneurship Theory and Practice, 24(1): 37-48.
    Williams, L. J., & Hazer, J. T. 1986. Antecedents and consequences of satisfaction and commitment in turnover models: A reanalysis using latent variable structural equation methods. Journal of Applied Psychology, 71(2): 219.
    Winter, S. G. 2003. Understanding dynamic capabilities. Strategic Management Journal, 24(10): 991-995.
    Wu, F., Yeniyurt, S., Kim, D., & Cavusgil, S. T. 2006. The impact of information technology on supply chain capabilities and firm performance: A resource-based view. Industrial Marketing Management, 35(4): 493-504.
    Wu, L., & Chen, J.-L. 2014. Knowledge management driven firm performance: the roles of business process capabilities and organizational learning. Journal of Knowledge Management: 141-1164.
    Yu, W., Jacobs, M. A., Salisbury, W. D., & Enns, H. 2013. The effects of supply chain integration on customer satisfaction and financial performance: An organizational learning perspective. International Journal of Production Economics, 146(1): 346-358.
    Yuniaristanto, Ikasari, N., Sutopo, W., & Zakaria, R. 2020. Performance Measurement in Supply Chain Using SCOR Model in The Lithium Battery Factory. IOP Conference Series: Materials Science and Engineering, 943(1): 012049.
    Yusuf, Y. Y., Sarhadi, M., & Gunasekaran, A. 1999. Agile manufacturing:: The drivers, concepts and attributes. International Journal of Production Economics, 62(1-2): 33-43.
    Zahra, S. A., & George, G. 2002. Absorptive capacity: A review, reconceptualization, and extension. Academy of Management Review, 27(2): 185-203.
    Zhu, G., Chou, M. C., & Tsai, C. W. 2020. Lessons Learned from the COVID-19 Pandemic Exposing the Shortcomings of Current Supply Chain Operations: A
    Long-Term Prescriptive Offering. Sustainability, 12(14): 5858
    Description: 博士
    國立政治大學
    企業管理學系
    104355503
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104355503
    Data Type: thesis
    Appears in Collections:[企業管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    550301.pdf4262KbAdobe PDF5View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback