English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51573248      Online Users : 932
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/148524


    Title: 利用專利分析進行技術預測:評估浮動式離岸風電技術創新發展
    Technological Forecasting by Patent Analysis: The Development of Floating Offshore Wind Energy Technology
    Authors: 陳思妤
    Chen, Sih-Yu
    Contributors: 柯玉佳
    Ko, Yu-Chia
    陳思妤
    Chen, Sih-Yu
    Keywords: 浮動式離岸風電
    技術預測
    成長曲線
    專利分析
    floating offshore wind energy
    technology forecasting
    growth curves
    patent analysis
    Date: 2023
    Issue Date: 2023-12-01 11:56:23 (UTC+8)
    Abstract: 本研究利用專利數據以分析浮動式離岸風電技術進行,採用Logistic model和Gompertz model進行技術預測評估,藉由這兩種模型的分析,評估專利數據對於預測技術發展的適用性,並了解浮動式離岸風電技術的演進。

    本研究首先使用Logistic model和Gompertz model進行技術預測,以評估兩模型對浮動式離岸風電技術領域的解釋能力,以確定何種模型更能準確預測該領域技術的發展趨勢。本研究將基於專利數據的相關指標,分析浮動式離岸風電領域的技術生命週期發展階段,藉此瞭解該技術的成長趨勢和關鍵發展階段,以提供政府或企業投入該領域的依據。本研究將探討專利分類號對浮動式離岸風電技術領域的分類,將有助於理解不同專利分類號在技術領域中的應用。

    研究結果顯示在浮動式離岸風電領域中,Gompertz model在模型適配能力與預測能力皆能夠展現良好的表現績效。此外,浮動式離岸風電技術目前處於成長期中期皆段,仍存在快速成長的空間,因此專利申請量將持續性增加。最後,針對相關技術的開發,除了應用於浮動式離岸風電領域,未來亦將可能擴展至其他多種再生能源技術中,是能夠協助能源轉型與淨零排放目標的重要技術。
    This study utilizes patent data to analyze the floating offshore wind energy technology. Logistic model and Gompertz model are applied for technology forecasting. Through these two models for analyzing, the study aims to comprehensively understand the domain of floating offshore wind energy technology through patent data analysis.

    By using the Logistic model and Gompertz model for technology forecasting to assess the performance of both models within the field of floating offshore wind energy technology. This assessment aims to select which model accurately predicts the development and prospect of this domain. Based on patent data indicators, this study explores the various stages of the technological lifecycle in the floating offshore wind energy domain. This exploration observes the growth trends and the development stages of this technology, and providing a reference for the government or the corporate. The study also explores the patent classification codes of the categorization of floating offshore wind energy technology, and offering insights for the applications of different patent classification codes.

    The result shows Gompertz model can fit the data of the floating offshore wind energy well. Furthermore, the technology of floating offshore wind energy currently reaches the middle of the growth stage. Consequently, patent applications are expected to increase continuously. Lastly, in addition to its application in the floating offshore wind energy domain, the development of the key technologies might extend to other renewable energy technologies. This expansion has the potential to promote the energy transition and make a significant contribution to achieving emissions reduction objective.
    Reference: 中文文獻
    朱文伶(2010),行動電話擴散研究之模型選用及驅動因子分析,國立政治大學科技管理研究所博士論文,台北,取自https://hdl.handle.net/11296/b5j8r6。
    吳欣穎(2009),科技產品生命週期之預測模型比較,國立交通大學管理科學系博士論文,新竹,取自https://hdl.handle.net/11296/4vmy9g。
    吳彥儒(2023),展望國際浮動式離岸風電發展趨勢與我國策略布局,臺灣經濟研究月刊,Vol. 46,Pages 32-40。
    袁建中(2005),產業分析之技術預測方法與實例,麥格羅‧希爾出版社。
    張登凱(2021),透過專利數據進行技術預測:探討自駕車技術之擴散,國立政治大學科技管理與智慧財產研究所碩士論文,台北,取自https://hdl.handle.net/11296/m94537。
    陳達仁、黃慕萱(2018),專利資訊檢索、分析與策略,華泰文化事業股份有限公司。
    經濟部智慧財產局(2020),離岸風電專利分析報告,取自https://pcm.tipo.gov.tw/PCM2010/PCM/commercial/03/WindPower.aspx?aType=3&Articletype=1&aSn=767。
    Tacx(2022),離岸風力發電場建構工程操作概論(二版),東美出版事業有限公司。

    外文文獻
    Adamuthe, A. C., & Thampi, G. T. (2019). Technology forecasting: A case study of computational technologies. Technological forecasting and social change, 143, 181-189.
    Altuntas, S., Dereli, T., & Kusiak, A. (2015). Forecasting technology success based on patent data. Technological forecasting and social change, 96, 202-214.
    Campani, M., & Vaglio, R. (2015). A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves. Scientometrics, 103(1), 75-83.
    Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143.
    Chanchetti, L. F., Diaz, S. M. O., Milanez, D. H., Leiva, D. R., de Faria, L. I. L., & Ishikawa, T. T. (2016). Technological forecasting of hydrogen storage materials using patent indicators. International Journal of Hydrogen Energy, 41(41), 18301-18310.
    Chen, Y.-H., Chen, C.-Y., & Lee, S.-C. (2011). Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. International Journal of Hydrogen Energy, 36(12), 6957-6969.
    Cheng, A.-C., & Chen, C.-Y. (2008). The technology forecasting of new materials: the example of nanosized ceramic powders. Romanian Journal of Economic Forecasting, 4, 88-110.
    Chu, W.-L., Wu, F.-S., Kao, K.-S., & Yen, D. C. (2009). Diffusion of mobile telephony: An empirical study in Taiwan. Telecommunications policy, 33(9), 506-520.
    Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological forecasting and social change, 73(8), 981-1012.
    Díaz, H., Serna, J., Nieto, J., & Guedes Soares, C. (2022). Market needs, opportunities and barriers for the floating wind industry. Journal of Marine Science and Engineering, 10(7), 934.
    Dubarić, E., Giannoccaro, D., Bengtsson, R., & Ackermann, T. (2011). Patent data as indicators of wind power technology development. World Patent Information, 33(2), 144-149.
    Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small business economics, 9, 361-381.
    Foster, R. N. (1986). Working the S-curve: assessing technological threats. Research Management, 29(4), 17-20.
    Gao, L., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T., Wang, W., & Huang, L. (2013). Technology life cycle analysis method based on patent documents. Technological forecasting and social change, 80(3), 398-407.
    Griliches, Z. (1998). Patent statistics as economic indicators: a survey. In R&D and productivity: the econometric evidence (pp. 287-343). University of Chicago Press.
    Group, T. F. A. M. W. (2004). Technology futures analysis: Toward integration of the field and new methods. Technological forecasting and social change, 71(3), 287-303.
    GWEC. (2021). GLOBAL WIND REPORT 2021.
    GWEC. (2023). Global Wind Report 2023. https://gwec.net/globalwindreport2023/
    Ho, J. C., Saw, E.-C., Lu, L. Y., & Liu, J. S. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological forecasting and social change, 82, 66-79.
    Huang, Y., Li, R., Zou, F., Jiang, L., Porter, A. L., & Zhang, L. (2022). Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technological forecasting and social change, 181, 121760.
    IPO. (2021). A worldwide overview of offshore wind power patents. https://www.gov.uk/government/publications/a-worldwide-overview-of-offshore-wind-power-patents
    IRENA. (2016). Floating foundations: A game changer for offshore wind.
    James, R., & Ros, M. C. (2015). Floating offshore wind: market and technology review. The Carbon Trust, 439.
    Johnstone, N., Haščič, I., & Popp, D. (2010). Renewable energy policies and technological innovation: evidence based on patent counts. Environmental and resource economics, 45, 133-155.
    Joo, K., Lee, M., & Lee, G. (2022). Technology originality and convergence analysis in the wind power field using patents. Energies, 15(9), 3316.
    Kaewtapee, C., Khetchaturat, C., & Bunchasak, C. (2011). Comparison of growth models between artificial neural networks and nonlinear regression analysis in Cherry Valley ducks. Journal of Applied Poultry Research, 20(4), 421-428.
    Kapoor, R., Karvonen, M., Ranaei, S., & Kässi, T. (2015). Patent portfolios of European wind industry: New insights using citation categories. World Patent Information, 41, 4-10.
    Karvonen, M., Lehtovaara, M., Kapoor, R., Kassi, T., & Pyrhonen, J. (2012). Analyzing the emerging offshore wind power market technologies. 2012 Proceedings of PICMET'12: Technology Management for Emerging Technologies,
    Lee, S., Marcu, M., & Lee, S. (2011). An empirical analysis of fixed and mobile broadband diffusion. Information economics and policy, 23(3-4), 227-233.
    Lin, D., Liu, W., Guo, Y., & Meyer, M. (2021). Using technological entropy to identify technology life cycle. Journal of Informetrics, 15(2), 101137.
    Lindman, Å., & Söderholm, P. (2016). Wind energy and green economy in Europe: measuring policy-induced innovation using patent data. Applied energy, 179, 1351-1359.
    Liu, S.-J., & Shyu, J. (1997). Strategic planning for technology development with patent analysis. International journal of technology management, 13(5-6), 661-680.
    Martin, C. A., & Witt, S. F. (1989). Forecasting tourism demand: A comparison of the accuracy of several quantitative methods. International Journal of Forecasting, 5(1), 7-19.
    Martino, J. P. (1993). Technological forecasting. The Futurist, 27(4), 13.
    Meade, N. (1984). The use of growth curves in forecasting market development—a review and appraisal. Journal of Forecasting, 3(4), 429-451.
    Meade, N., & Islam, T. (1995). Forecasting with growth curves: An empirical comparison. International Journal of Forecasting, 11(2), 199-215.
    Meade, N., & Islam, T. (1998). Technological forecasting—Model selection, model stability, and combining models. Management science, 44(8), 1115-1130.
    Meade, N., & Islam, T. (2015). Forecasting in telecommunications and ICT—A review. International Journal of Forecasting, 31(4), 1105-1126.
    Meyer, P. S., & Ausubel, J. H. (1999). Carrying capacity: a model with logistically varying limits. Technological forecasting and social change, 61(3), 209-214.
    Mueller, S. C., Sandner, P. G., & Welpe, I. M. (2015). Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Applied energy, 137, 537-544.
    Park, C., Lim, S., Shin, J., & Lee, C.-Y. (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea. Technological forecasting and social change, 181, 121750.
    Porter, A. L. (1991). Forecasting and management of technology (Vol. 18). John Wiley & Sons.
    Porter, A. L., & Rossini, F. (1987). Technological forecasting. Encyclopedia of System and Control, 4823-4828.
    Sossa, J. W. Z., Marro, F. P., Alzate, B. A., Salazar, F. M. V., & Patiño, A. F. A. (2016). S-Curve analysis and technology life cycle. Application in series of data of articles and patents. Revista ESPACIOS| Vol. 37 (Nº 07) Año 2016.
    Stuart, T. E., & Podolny, J. M. (1996). Local search and the evolution of technological capabilities. Strategic management journal, 17(S1), 21-38.
    Trappey, C. V., & Wu, H.-Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421-430.
    Trappey, C. V., Wu, H.-Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.
    TRUST, C. (2015). Floating offshore wind market technology review.
    TRUST, C. (2022). FLOATING WIND JOINT INDUSTRY PROGRAMME Phase IV Summary Report. https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/documents/resource/public/FLW_P4_Summaryreport.pdf
    Tsai, Y.-C., Huang, Y.-F., & Yang, J.-T. (2016). Strategies for the development of offshore wind technology for far-east countries–a point of view from patent analysis. Renewable and Sustainable Energy Reviews, 60, 182-194.
    WFO. (2023). Global Offshore Wind Report 2022. https://wfo-global.org/reports/
    Wright, J. T., & Giovinazzo, R. A. (2000). Delphi-uma ferramenta de apoio ao planejamento prospectivo. Caderno de pesquisas em administração, 1(12), 54-65.
    Yang, X., Yu, X., & Liu, X. (2018). Obtaining a sustainable competitive advantage from patent information: A patent analysis of the graphene industry. Sustainability, 10(12), 4800.
    Young, P. (1993). Technological growth curves: a competition of forecasting models. Technological forecasting and social change, 44(4), 375-389.
    Zhu, H., Du, Z., Wu, J., & Sun, Z. (2022). Innovation environment and opportunities of offshore wind turbine foundations: Insights from a new patent analysis approach. World Patent Information, 68, 102092.
    Description: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    110364125
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110364125
    Data Type: thesis
    Appears in Collections:[科技管理與智慧財產研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    412501.pdf2771KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback