Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/147742
|
Title: | 無人機以視覺導航自主穿行隧道之研究 Research on Autonomous Tunnel Navigation of Quadrotor UAV Using Visual Navigation |
Authors: | 謝文茂 Hsieh, Wen-Mao |
Contributors: | 劉吉軒 Liu, Jyi-Shane 謝文茂 Hsieh, Wen-Mao |
Keywords: | 四旋翼無人機 視覺導航 穿行隧道 目標檢測 目標跟蹤 飛行控制 quadcopter drone vision-based navigation tunnel traversal target detection target tracking flight control |
Date: | 2023 |
Issue Date: | 2023-10-03 10:48:05 (UTC+8) |
Abstract: | 近年來,無人機的技術已經發展得非常快速,已經被廣泛應用於各種不同的領域,例如物流、建築檢查、搜索和救援等。然而,在複雜的環境中,無人機仍然存在許多挑戰,例如自主導航和穿行隧道等。在本文中,提出了一種基於視覺導航的自主無人機穿行隧道方法。利用機上攝影機捕捉隧道內的視覺資訊,並使用電腦視覺技術模型來檢測隧道內的圖像特徵輪廓,然後利用控制演算法來控制無人機的飛行,以便穿行隧道。將此方法應用於一個實驗室的模擬環境中,並驗證了其效果。結果表明,提出的方法可以有效地控制無人機穿行隧道,並且可以在複雜的環境中穩定地飛行。
本研究是一種基於視覺導航的自主無人機穿行隧道方法,尋找入口並進入隧道,在隧道內部,再通過前方攝影機對無人機實現自主導航飛行,在飛行的同時利用攝影機擷取隧道內周圍環境的影像利用視覺導航模型來對單張圖像進行目標檢測與跟蹤,最後自主飛出隧道,整個過程無須人工干預,具有良好的自主飛行及導航能力,還具有檢測範圍廣、速度快、精確度高等特點。 In recent years, drone technology has advanced rapidly and has been widely applied in various fields such as logistics, construction inspection, search and rescue, and more. However, in complex environments, drones still face numerous challenges, including autonomous navigation and tunnel traversal. In this paper, a vision-based autonomous drone tunnel traversal method is proposed. The approach involves capturing visual information within the tunnel using an onboard camera and utilizing computer vision models to detect image feature contours within the tunnel. A control algorithm is then employed to guide the drone`s flight for tunnel traversal. This method is applied in a laboratory simulation environment and its effectiveness is validated. The results demonstrate that the proposed method can effectively guide drones to traverse tunnels and maintain stable flight within complex environments.
This study presents a vision-based autonomous drone tunnel traversal method that involves locating and entering a tunnel entrance, navigating autonomously within the tunnel using a front-facing camera, capturing the surrounding tunnel environment, performing target detection and tracking using a visual navigation model for individual frames, and autonomously exiting the tunnel, all without human intervention. This method exhibits strong autonomous flight and navigation capabilities, along with features such as broad detection range, high speed, and accuracy. |
Reference: | [1] Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84 - 90. [2]He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. [3] Chen, W., Fu, Z., Yang, D., & Deng, J. (2016). Single-Image Depth Perception in the Wild. ArXiv, abs/1604.03901. [4] Liu, M., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., & Kautz, J. (2019). Few-Shot Unsupervised Image-to-Image Translation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 10550-10559. [5] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., & Koltun, V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1623-1637. [6] Xiao, Y., Ruan, X., & Zhang, X. (2018). Monocular Visual-Inertial State Initialization for Micro Aerial Vehicles. Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering. [7] Liu, P., Geppert, M., Heng, L., Sattler, T., Geiger, A., & Pollefeys, M. (2018). Towards Robust Visual Odometry with a Multi-Camera System. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1154-1161. [8] Lu, Y., Xue, Z., Xia, G., & Zhang, L. (2018). A survey on vision-based UAV navigation. Geo-spatial Information Science, 21, 21 - 32. [9]Shen, S., Mulgaonkar, Y., Michael, N., & Kumar, V.R. (2013). Vision-Based State Estimation and Trajectory Control Towards High-Speed Flight with a Quadrotor. Robotics: Science and Systems. [10] Walker, O., Vanegas, F., Gonzalez, F., & Koenig, S. (2019). A Deep Reinforcement Learning Framework for UAV Navigation in Indoor Environments. 2019 IEEE Aerospace Conference, 1-14. [11] González, R.C., & Woods, R.E. (2008). Digital image processing, 3rd Edition. [12] Duda, R.O., Hart, P.E., & Stork, D.G. (2000). Pattern classification, 2nd Edition. [13]Welch, G., & Bishop, G. (1995). An Introduction to Kalman Filter. International Conference on Computer Graphics and Interactive Techniques. [14]Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. NIPS. [15] Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., & Navab, N. (2016). Deeper Depth Prediction with Fully Convolutional Residual Networks. 2016 Fourth International Conference on 3D Vision (3DV), 239-248. [16] Liu, F., Shen, C., Lin, G., & Reid, I.D. (2015). Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2024-2039. [17] Zhou, T., Brown, M.A., Snavely, N., & Lowe, D.G. (2017). Unsupervised Learning of Depth and Ego-Motion from Video. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6612-6619. [18] Han, J., Ngan, K.N., Li, M., & Zhang, H. (2006). Unsupervised extraction of visual attention objects in color images. IEEE Transactions on Circuits and Systems for Video Technology, 16, 141-145. [19] Ko, B., & Nam, J.Y. (2006). Object-of-interest image segmentation based on human attention and semantic region clustering. Journal of the Optical Society of America. A, Optics, image science, and vision, 23 10, 2462-70 . [20]Liu, F. & Shen, T. & Lou, S. & Han, B.. (2017). Deep Network Saliency Detection Based on Global Model and Local Optimization. Guangxue Xuebao/Acta Optica Sinica. 37. 10.3788/AOS201737.1215005. [21]Zheng, L., Wang, S., Liu, Z., & Tian, Q. (2015). Fast Image Retrieval: Query Pruning and Early Termination. IEEE Transactions on Multimedia, 17, 648-659. [22] Hou, X., & Zhang, L. (2007). Saliency Detection: A Spectral Residual Approach. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-8. [23]Cheng, M., Zhang, G., Mitra, N.J., Huang, X., & Hu, S. (2011). Global contrast based salient region detection. CVPR 2011, 409-416. [24] He, S., Lau, R.W., Liu, W., Huang, Z., & Yang, Q. (2015). SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection. International Journal of Computer Vision, 115, 330-344. [25] Hou, Q., Cheng, M., Hu, X., Borji, A., Tu, Z., & Torr, P.H. (2016). Deeply Supervised Salient Object Detection with Short Connections. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5300-5309. [26] Bradski, G. (2000). The OpenCV Library. Dr. Dobb`s Journal of Software Tools, 25-33. [27] Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing. Pearson Education India. [28] Kass, M., Witkin, A.P., & Terzopoulos, D. (2004). Snakes: Active contour models. International Journal of Computer Vision, 1, 321-331. [29] Canny, J.F. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, 679-698. [30] Adams, R., & Bischof, L. (1994). Seeded Region Growing. IEEE Trans. Pattern Anal. Mach. Intell., 16, 641-647. [31] Serra, J.P. (1983). Image Analysis and Mathematical Morphology. [32] Carreira, J., & Zisserman, A. (2017). Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4724-4733. [33] Jung, H., Kim, Y., Min, D., Oh, C., & Sohn, K. (2017). Depth prediction from a single image with conditional adversarial networks. 2017 IEEE International Conference on Image Processing (ICIP), 1717-1721. [34]Kingma, D.P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980. [35] Wang, W., Xie, E., Li, X., Fan, D., Song, K., Liang, D., Lu, T., Luo, P., & Shao, L. (2021). Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 548-558. [36] Duda, R.O., & Hart, P.E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM, 15, 11-15. [37] Başar, T. (1960). A new approach to linear filtering and prediction problems" transaction of the asme~journal of basic. |
Description: | 碩士 國立政治大學 資訊科學系碩士在職專班 108971003 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0108971003 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系碩士在職專班] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
100301.pdf | | 3234Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|