Reference: | 朱啟恆,大數據於金融業之應用,財金資訊季刊,第84期,頁12-18,2015年10月。https://www.fisc.com.tw/Upload/8eaaa580-8592-4511-bd3d-a95d0d5ccdc8/TC/8402.pdf 行政院洗錢防制辦公室,2021國家洗錢資恐及資武擴風險評估報告,2021年12月。https://www.amlo.moj.gov.tw/media/20211299/2021%E5%9C%8B%E5%AE%B6%E6%B4%97%E9%8C%A2%E8%B3%87%E6%81%90%E5%8F%8A%E8%B3%87%E6%AD%A6%E6%93%B4%E9%A2%A8%E9%9A%AA%E8%A9%95%E4%BC%B0%E5%A0%B1%E5%91%8A.pdf?mediaDL=true 谷湘儀、臧正運等人,從「監理沙盒」制度展望臺灣FinTech監理思維,五南,2版,2018年4月。 林志潔等人,監理科技與法遵科技之發展應用及其對金融穩定之影響,財團法人台北外匯市場發展基金會委託報告,2022年1月,https://www.tpefx.com.tw/uploads/download/tw/The%20development%20and%20application%20of%20supervisory%20technology%20and%20legal%20compliance%20technology%20and%20their%20impact%20on%20financial%20stability.pdf 林鈺雄、蔡佩玲、楊雲驊、林志潔、李聖傑、李宏錦、謝建國、金延華,洗錢防制新法之立法評析,月旦刑事法評論,第4期,頁 117-129,2017年3月。 法務部調查局洗錢防制處,洗錢防制工作年報,2021年10月, https://www.mjib.gov.tw/userfiles/files/35-%E6%B4%97%E9%8C%A2%E9%98%B2%E5%88%B6%E8%99%95/files/%E6%B4%97%E9%8C%A2%E9%98%B2%E5%88%B6%E5%B7%A5%E4%BD%9C%E5%B9%B4%E5%A0%B1/annual_109.pdf 洪良明、張信一,國際內部稽核協會三道模型,內部稽核,第111期,頁 4-9,2020年10月。 金融監督管理委員會,金融科技發展路徑圖,2020年12月,https://www.fsc.gov.tw/websitedowndoc?file=chfsc/202012241229310.pdf&filedisplay=1090827%E9%87%91%E8%9E%8D%E7%A7%91%E6%8A%80%E7%99%BC%E5%B1%95%E8%B7%AF%E5%BE%91%E5%9C%96%E5%A0%B1%E5%91%8A%E6%9B%B8.pdf 陳慧蓉等人,監理科技與法遵科技最新發展趨勢之探討,臺灣集中保管結算所報告,2020年12月,https://m.tdcc.com.tw/TDCCWEB/upload/402897967d841dba017e3226bd08006c.pdf 程法彰,洗錢防制與個人資料保護的兩難,全國律師,第22卷第11期,頁 65-69,2018年11月。 程權勝,金融機構防制洗錢及打擊資恐監理新趨勢 -從兆豐商銀遭重罰案談起,政治大學法學院在職專班碩士論文,2017年6月。 蔣念祖,美國、新加坡及香港洗錢防制國際相互評鑑報告之研析,臺灣法學雜誌,第378期,頁378: 19-54,2019年10月。 行政院,第3輪洗錢防制評鑑 臺灣獲佳績—金流透明 世界好評,2019年10月,https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/bdf44d9a-f4f0-43aa-99f2-771f612983ac 行政院洗錢防制辦公室,臺灣接受亞太防制洗錢組織(APG)第三輪相互評鑑之評鑑報告正式出爐!!, 2018年11月。https://www.amlo.moj.gov.tw/1506/1507/14969/post 陳盈州、張珍鳳,Regtech於防制洗錢之應用與發展,勤業眾信通訊,2021年10月,https://www2.deloitte.com/tw/tc/pages/audit/articles/regtech-prevent-money.html 陳智忠、鍾宜樺、黃琪淯,輕鬆玩轉RPA的關鍵,安永台灣,2021年7月,https://www.ey.com/zh_tw/financial-accounting-advisory-services/key-to-digital-transformation-through-rpa 孫欣、章友馨,金融機構法令遵循風險評估與法規資料庫,安建通訊電子報,2018年12月,https://kpmg.com/tw/zh/home/insights/2018/01/full-bleed-page-test.html Abiteboul. S. Querying Semi-Structured Data, ICDT `97: Proceedings of the 6th International Conference on Database Theory, 1–18 (1997). Ad Hoc Expert Group (AHEG) for the Preparation of a Draft text of a Recommendation the Ethics of Artificial Intelligence. Outcome document: first draft of the Recommendation on the Ethics of Artificial Intelligence, 23 (2020). Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000373434 Arner, D. W., Barberis, J. N., & Buckley, R. P. The emergence of RegTech 2.0: From know your customer to know your data. Journal of Financial Transformation, 79, 17–63 (2016). Arner. D.W., Barberis. J.N. & Buckley. R.P. FinTech, RegTech and the Reconceptualization of Financial Regulation. Northwestern Journal of International Law & Business, Forthcoming University of Hong Kong Faculty of Law Research Paper, 37(3), 371-413 (2017). Arner. D.W., Barberis. J.N. & Buckley. R.P. FinTech, RegTech: Building a Better Financial System1. Handbook of Blockchain, Digital Finance, and Inclusion, 1, 359-373 (2018). Bakir. G., Hofmann. T. & Scholkopf. B. Predicting Structured Data - (Neural Information Processing). Cambridge: The MIT Press (2007). Berk, R. A. Artificial Intelligence, Predictive Policing, and Risk Assessment for Law Enforcement, 4, 209-237 (2020). Bishop, C. M. Pattern Recognition and Machine Learning. New York, NY: Springer (2006). Bostrom, N. Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press (2014). Börner. K. & Polley. D. E. Visual Insights: A Practical Guide to Making Sense of Data, 114-185 (2014). Buneman. P., Davidson. S., Fernandez. M. & Suciu. D. Adding structure to unstructured data, ICDT 1997: Database Theory, 336–350 (1997). Braden. R. Allenby, Governance and Technology Systems: The Challenge of Emerging Technologies, The International Library of Ethics, Law and Technology 7, 20-22 (2011). Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P. & Oliveira, A. L. Computational intelligence and fnancial markets: A survey and future directions. Expert Systems with Applications, 55, 194–211 (2016). Chandrinos, S. K., Sakkas, G. & Lagaros, N. D. AIRMS: A risk management tool using machine learning. Expert Systems with Applications, 105, 34–48 (2018). Choi, T. M., Chan, H. K., & Yue, X. Recent development in big data analytics for business operations and risk management. IEEE Transactions on Cybernetics, 47(1), 81–92 (2017). Colladon, A. F. & Remondi, E. Using social network analysis to prevent money laundering. Expert Systems with Applications, 67, 49–58 (2017). Crawford, K. & Calo. R. There is a Blind Spot in AI Research (2016), Retrieved from https://www.nature.com/news/there-is-a-blind-spot-in-ai-research-1.20805. Last accessed 6 December 2021. Data Taxonomy. NSW Government website (2023), Retrieved from https://data.nsw.gov.au/IDMF/data-structure-and-coordination/data-taxonomy Day, S. Quants turn to machine learning to model market impact. Risk.net (2017), Retrieved from https://www.risk.net/asset-management/4644191/quants-turnto-machine-learning-to-model-market-impact. Last accessed 3 May 2023. Deloitte Insight. 2023 banking and capital markets outlook (2023), Retrieved from https://www2.deloitte.com/content/dam/insights/articles/us175544_cfs-fsi-outlook-banking/DI_CFS_FSI_Outlook-Banking.pdf Deloitte Insight. RegTech Universe 2023 (2022), Retrieved from https://www2.deloitte.com/lu/en/pages/technology/articles/regtech-companies-compliance.html Demetis, D. S. Fighting money laundering with technology: A case study of Bank X in the UK. Decision Support Systems, 105. 96-107 (2018). Emirbayer, M., Goodwin, J. Network Analysis, Culture, and the Problem of Agency. American Journal of Sociology, 99(6), 1411-1454 (1994). European Commission. White Paper On Artificial Intelligence–A European approach to excellence and trust, Brussels, 19,2 (2020). EU. Proposal for a Regulation laying down harmonised rules on artificial intelligence (2021). Retrieved from https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence EU. A European approach to artificial intelligence-Shaping Europe’s digital future, Retrieved from https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/shaping-europes-digital-future_en. Last accessed 8 October 2022. EUR-Lex. Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence. Brussels (2021). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206 Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions. BioScience, 68(8), 563–576 (2018). FATF. The FATF Recommendations-International Standards on Combating Money Laundering and the Financing of Terrorism & Proliferation (2012), Retrieved from https://www.fatf-gafi.org/publications/fatfrecommendations/documents/fatf-recommendations.html FATF. Risk-Based Approach for the Banking Sector (2014), Retrieved from https://www.fatf-gafi.org/documents/riskbasedapproach/documents/risk-based-approach-banking-sector.html?hf=10&b=0&s=desc (fatf_releasedate) FATF. Digital Transformation of AML/CFT (2020), Retrieved from https://www.fatf-gafi.org/publications/digitaltransformation/digital-transformation.html?hf=10&b=0&s=desc FATF.Opportunities and Challenges of New Technologies for AML/CFT (2020), Retrieved from https://www.fatf-gafi.org/media/fatf/documents/reports/Opportunities-Challenges-of-New-Technologies-for-AML-CFT.pdf FATF. Stocktake on Data Pooling, Collaborative Analytics and Data Protectio (2020), Retrieved from https://www.fatf-gafi.org/media/fatf/documents/reports/Opportunities-Challenges-of-New-Technologies-for-AML-CFT.pdf FATF. Methodology for Assessing Technical Compliance with the FATF Recommendations and the Effectiveness of AML/CFT Systems (2021), Retrieved from https://www.fatf-gafi.org/en/publications/Mutualevaluations/Fatf-methodology.html FCA. Call for Input:Supporting the development and adoption of RegTech (2015), Retrieved from https://www.fca.org.uk/publication/call-for-input/regtech-call-for-input.pdf Federal Register. Executive Order on Maintaining American Leadership in Artificial Intelligence (2019). Retrieved from https://www.federalregister.gov/documents/2019/02/14/2019-02544/maintaining-american-leadership-in-artificial-intelligence Federal Register. Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government (2020). Retrieved from https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government Figini, S., Bonelli, F. & Giovannini, E. Solvency prediction for small and medium enterprises in banking. Decision Support Systems, 102, 91–97 (2017). Financial Stability Board. Artifcial intelligence and machine learning in fnancial services (2017). Retrieved from http://www.fsb.org/wp-content/uploads/P011117.pdf. Financial Stability Institute. Innovative technology in financial supervision (suptech) - the experience of early users. FSI Insights (2018), Retrieved from https://www.bis.org/fsi/publ/insights9.pdf Freeman, L.C. The Development of Social Network Analysis: A Study in the Sociology of Science. Vancouver, BC: Empirical Press (2004). Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing. Journal of Artificial Intelligence Research, 57, 345–420 (2015). Godsiff, P. & Wood, Z. Financing the Digital Economy: From financing products and purchases to financing service and use. Index initiative in the Digital Economy at Exeter (2020). Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep learning. Cambridge: MIT Press, 1, 96-161(2016). Goldwasser. S., Micali. S. & Rakoff. C. The knowledge complexity of interactive proof-systems. STOC `85: Proceedings of the seventeenth annual ACM symposium on Theory of computing, 291-304 (1985). Heaton, J. B., Polson, N. G. & Witte, J. H. Deep learning for finance: Deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3–12 (2017). Hendricks, D. & Wilcox, D. A reinforcement learning extension to the Almgren-Chriss framework for optimal trade execution. In IEEE Conference on Computational Intelligence for Financial Engineering & Economics .CIFEr, 457–464 (2014). Hu, Y., Zhang, X., Feng, B., Xie, K. & Liu, M. iTrade: A mobile datadriven stock trading system with concept drift adaptation. International Journal of Data Warehousing and Mining (IJDWM), 11(1), 66–83 (2015). ICDPPC. Declaration on Ethics and Data Protection in Artifical Intelligence. 40th International Conference of Data Protection and Privacy Commissioners (2018). Retrieved from http://globalprivacyassembly.org/wp-content/uploads/2018/10/20180922_ICDPPC-40th_AI-Declaration_ADOPTED.pdf IIF. Regtech in Financial Services: Solutions for Compliance and Reporting (2016). Retrieved from https://www.iif.com/Publications/ID/1686/Regtech-in-Financial-Services-Solutions-for-Compliance-and-Reporting+ Investopedia - Market Fragmentation. Retrieved from https://www.investopedia.com/terms/m/market-fragmentation.asp. Last accessed 11 June 2021. Institute for Economics and Peace. Global Terrorism Index 2023 (2023). Retrieved from https://www.visionofhumanity.org/maps/global-terrorism-index/#/ Leenes. R. et al. Regulatory Challenges of Robotics: Some Guidelines for Addressing Legal and Ethical. INNOVATION & TECH, 9, 1-2 (2017). Janssen, M. & Brous, P. & Janowski, T. Data governance: Organizing data for trustworthy Artificial Intelligence. Computer Science (2020). Kessler. An Overview of Cryptography (2023). Retrieved from https://www.garykessler.net/library/crypto.html. Last accessed 17 March 2022. Khandani, A. E., Kim, A. J. & Lo, A. W. Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767–2787 (2010). Kleppmann, M. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. O`Reilly (2017). KPMG. How RegTech can transform your business (2022), https://home.kpmg/dp/en/home/media/press-releases/2022/02/how-regtech-can-transform-your-business.html Kumar, P. P. Machine learning for model development in market risk. GARP Institute (2018). Retrieved from https://www.garp.org/#!/risk-intelligence/all/all/a1Z1W000003fM0yUAE?utm_medium=social&utm_source=facebook&utm_content=org_whitepaper&utm_term=machinelearning&utm_campaign=sm_riskintelligence. Last accessed 17 August 2022. Lin, L. & Nestarcova, D. Venture Capital in the Rise of Crypto Economy: Problems and Prospects, BERKELEY, 16, 533-568 (2016). Guihot. M., Matthew. A. F. & Suzor. N. P. Nudging Robots: Innovative Solutions to Regulate Artificial Intelligence, 385-414 (2017). Milgram, S. The Small World Problem. Psychology Today, 2, 60-67 (1967). Mitchell, J.C. The concept and use of social networks. Annual Review of Anthropology, 3, 179-299 (1974). Moosa, I. A. Operational risk management. New York: Palgrave Macmillan (2007). Mugarura, N. Uncoupling the relationship between corruption and money laundering crimes. Journal of Financial Regulation and Compliance, 24(1), 74-89 (2016). Nazemi, A., Heidenreich, K. & Fabozzi, F. J. Improving corporate bond recovery rate prediction using multi-factor support vector regressions. European Journal of Operational Research, forthcoming (2018). Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y. & Sun, X. The application of data mining techniques in fnancial fraud detection: A classifcation framework and an academic review of literature. Decision Support Systems, 50(3), 559–569 (2011). NIST. AI Risk Management Framework Concept Paper (2021), Retrieved from https://www.nist.gov/system/files/documents/2021/12/14/AI%20RMF%20Concept%20Paper_13Dec2021_posted.pdf NIST. AI Risk Management Framework: Initial Draft (2022), Retrieved from https://www.nist.gov/system/files/documents/2022/03/17/AI-RMF-1stdraft.pdf NIST. AI Risk Management Framework: Second Draft (2022), Retrieved from https://www.nist.gov/system/files/documents/2022/08/18/AI_RMF_2nd_draft.pdf NIST. AI Risk Management Framework: 1.0 (2023), Retrieved from https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf OECD. Policies, Data and Analysis for Trustworthy Artificial Intelligence. Retrieved from https://oecd.ai/en/. Last accessed 6 April 2023. OECD. OECD launches framework for classifying AI systems (2022). Retrieved fromhttps://www.oecd-ilibrary.org/docserver/cb6d9eca-en.pdf?expires=1647274180&id=id&accname=guest&checksum=68ACD0EBC793F9EF24824263215774CD OECD. OECD AI Principles overview. Retrieved from https://oecd.ai/en/ai-principles. Last accessed 7 December 2022. Rivest. R. L. Cryptography and machine learning. International Conference on the Theory and Application of Cryptology, 739 (2005). Sanford, A. & Moosa, I. Operational risk modelling and organizational learning in structured fnance operations: A Bayesian network approach. Journal of the Operational Research Society, 66(1), 86-115 (2015). Schmitz. S., Schluetter. M. & Epple. U. Automation of Automation — Definition, components and challenges (2009). Shieber, S. M. The turing test: Verbal behavior as the hallmark of intelligence. Cambridge: MIT Press (2004). Singh, H. Adopting RegTech: A practical guide. Journal of Financial Compliance. Henry Stewart Publications. 6(15). 80-94 (2022). Son, Y., Byun, H. & Lee, J. Nonparametric machine learning models for predicting the credit default swaps: An empirical study. Expert Systems with Applications. 58. 210-220 (2016). Subramanya. S. R. & Yi. B. K. Digital Signatures. IEEE Potentials, 25(2), 5-8 (2006). Taylor, C. R., Wilson, C., Holttinen, E., & Morozova, A. Institutional Arrangements for Fintech Regulation and Supervision. IMF (2020). Retrieved from https://www.imf.org/en/Publications/fintech-notes/Issues/2020/01/09/Institutional-Arrangements-for-Fintech-Regulation-and-Supervision-48809 The Wolfsberg Group. Wolfsberg Financial Crime Principles for Correspondent Banking (2022). Retrieved from https://www.wolfsberg-principles.com/sites/default/files/wb/pdfs/wolfsberg-standards/15.%20Wolfsberg_RBA_Guidance_%282006%29.pdf Van Liebergen, B. Machine learning: A revolution in risk management and compliance?. Journal of Financial Transformation, 45, 60-67 (2017). Walport, M. FinTech Futures: The UK as a World Leader in Financial Technologiesh-A report by the UK Government Chief Scientific Adviser (2015), Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/413095/gs-15-3-fintech-futures.pdf Wellman, B. Network analysis: Some basic principles. Sociological Theory, 1, 155-200 (1983). Wil M. P. Aalst. V. D., Bichler. M. & Heinzl. A. Robotic Process Automation. Business & Information Systems Engineering, 60, 269–272 (2018). Wilson, H. J., Daugherty, P. & Bianzino, N. The jobs that artificial intelligence will create. MIT Sloan Management Review, 58(4), 14-16 ( 2017). Wolfsberg Group. Wolfsberg Group Endorses Use of AI/ML for Financial Crime Compliance (2022). Retrieved from https://www.wolfsberg-principles.com/sites/default/files/wb/Wolfsberg%20Principles%20for%20Using%20Artificial%20Intelligence%20and%20Machine%20Learning%20in%20Financial%20Crime%20Compliance.pdf Woodall, L. Model risk managers eye benefts of machine learning. Risk.net, https://www.risk.net/risk-management/4646956/model-risk-managers-eye-benefts-of-machine-learning (2017). Last accessed 17 August 2018. Wu. G., Mu. Y. , Susilo. W., Guo. F. & Zhang. F. Privacy-preserving certificateless cloud auditing with multiple users, Wireless Personal Communications, 106, 1161-1182 (2019). Yang, C.C., Shi, X. & Wei C-P. Discovering Event Evolution Graphs from News Corpora. IEEE Transactions on Systems Man and Cybernetics-Part A Systems and Humans, 39(4), 850-863 (2009). |