Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/147069
|
Title: | 核心專利技術進步率與專利引用關聯之探討 - 以動力電池專利為例 The Relation between Technology Performance Improvement rate and Patent Citations - The Case of Battery Technology |
Authors: | 翁崇綸 Weng, Chong-Lun |
Contributors: | 李浩仲 李文傑 Li, Hao-Chung Li, Wen-Jie 翁崇綸 Weng, Chong-Lun |
Keywords: | 動力電池 核心專利 技術進步率 專利引用網絡 Electric vehicle battery Core patent Technology improvement rate |
Date: | 2023 |
Issue Date: | 2023-09-01 15:33:31 (UTC+8) |
Abstract: | 近年來,全球暖化問題日益嚴重,許多國家紛紛確立了淨零碳排的目標,並頒布了禁止燃油汽車銷售的法規,直接推動電動車產業在未來的發展。然而,電動車的高昂價格和續航里程不足等問題仍然存在,影響了其全面普及。因此,本研究從專利分析的角度出發,並以在未來有望成為發展重點的動力電池領域為例,利用技術進步率的估計推敲在未來具備發展潛力的技術領域,建構專利引用網絡了解其發展脈絡,並選取美國和中國專利局資料,針對二國在動力電池產業鏈的上中下游技術發展進行研究,以了解產業的現況及發展趨勢。本研究利用1990年至2022年間的專利資料,研究結果顯示,中國的動力電池研究發展主要由企業和學術機構驅動。在發展趨勢方面,中國在上游領域致力於開發多元化的複合材料。在中游領域,中國專注於優化生產製程,以降低電池的成本和提高效能。在下游領域,則專注於改善車體的儲能能力,以提供更好的使用體驗。相較之下,美國的動力電池發展主要受到日本和韓國企業的驅動。在上游領域,美國企業致力於固態電池的研究和開發,以追求更高效能和更可靠的電池技術。在中游領域,通過改變電池模組的結構來提升性能和可靠性。在下游領域,美國致力於發展智能化充電系統和充電基礎設施,以提供更便捷和智能化的充電體驗。 In response to the escalating global warming crisis, countries worldwide are prioritizing the transition to net-zero carbon emissions and phasing out fossil fuel vehicles. The electric vehicle (EV) industry is at the forefront of this transformation. However, challenges such as high costs and limited range hinder widespread EV adoption. This study examines the developments in the electric vehicle battery industry`s upstream, midstream, and downstream sectors in China and the United States using patent analysis. The research reveals that in China, enterprises and academic institutions drive the research and development of key battery technologies. China focuses on diversifying composite materials and exploring solid-state batteries in the upstream sector. In the midstream sector, efforts are directed towards optimizing production processes to reduce costs. Improving the energy storage capacity of vehicle bodies is a recent trend in the downstream sector. In the United States, the development of electric vehicle batteries is primarily driven by Japanese and South Korean companies. US firms concentrate on solid-state battery research in the upstream sector, while in the midstream sector, they enhance performance and reliability through battery module structure improvements. The US also prioritizes developing intelligent charging systems and infrastructure in the downstream sector. |
Reference: | 中文文獻 吳念祺, & 陳彥豪. (2011). 電動車成本結構分析及對傳統汽車產業之影響. 臺灣經濟研究月刊, 34(11), 75-82. 英文文獻 Abrams, D.(2021), “COVID and Crime: An Early Empirical Look,” Journal of Public Economics, 194, 104344. Alstott, J., Triulzi, G., Yan, B., & Luo, J. (2017). Mapping technology space by normalizing patent networks. Scientometrics, 110, 443-479. Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-519. Borgstedt, P., Neyer, B., & Schewe, G. (2017). Paving the road to electric vehicles–A patent analysis of the automotive supply industry. Journal of cleaner production, 167, 75-87. Degroote, B., & Held, P. (2018). Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation. World Patent Information, 54, S78-S84. Dijk, M., Orsato, R. J., & Kemp, R. (2013). The emergence of an electric mobility trajectory. Energy policy, 52, 135-145. Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small business economics, 9(4), 361-381. Farmer, J. D., & Lafond, F. (2016). How predictable is technological progress?. Research Policy, 45(3), 647-665. Feng, S., & Magee, C. L. (2020). Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Applied Energy, 260, 114264. Gereffi, G., Humphrey, J., & Sturgeon, T. (2005). The governance of global value chains. Review of international political economy, 12(1), 78-104. Golembiewski, B., Vom Stein, N., Sick, N., & Wiemhöfer, H. D. (2015). Identifying trends in battery technologies with regard to electric mobility: evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, 87, 800-810. Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social networks, 11(1), 39-63. Koh, H., & Magee, C. L. (2006). A functional approach for studying technological progress: Application to information technology. Technological Forecasting and Social Change, 73(9), 1061-1083. Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The economic journal, 114(495), 441-465. Martinelli, A., & Nomaler, Ö. (2014). Measuring knowledge persistence: a genetic approach to patent citation networks. Journal of Evolutionary Economics, 24, 623-652. Park, H., & Magee, C. L. (2017). Tracing technological development trajectories: A genetic knowledge persistence-based main path approach. PloS one, 12(1), e0170895. Pilkington, A., Dyerson, R., & Tissier, O. (2002). The electric vehicle:: Patent data as indicators of technological development. World patent information, 24(1), 5-12. Porter, A. L. D. E., & Chubin, D. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3-4), 161-176. Rosenberg, N., & Nelson, R. R. (1994). American universities and technical advance in industry. Research policy, 23(3), 323-348. Stephens, J. C., Wilson, E. J., & Peterson, T. R. (2008). Socio-Political Evaluation of Energy Deployment (SPEED): An integrated research framework analyzing energy technology deployment. Technological forecasting and social change, 75(8), 1224-1246. Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. The Rand journal of economics, 172-187. Triulzi, G. (2015). Looking for the right path: technology dynamics, inventive strategies and catching-up in the semiconductor industry. Triulzi, G., Alstott, J., & Magee, C. L. (2020). Estimating technology performance improvement rates by mining patent data. Technological Forecasting and Social Change, 158, 120100. Valentini, L. (2012). Ideal vs. non‐ideal theory: A conceptual map. Philosophy compass, 7(9), 654-664. Väyrynen, A., & Salminen, J. (2012). Lithium ion battery production. The Journal of Chemical Thermodynamics, 46, 80-85. Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in complex systems, 10(01), 93-115. Wang, Z., Yang, Z., Zhang, Y., & Yin, J. (2012). Energy technology patents–CO2 emissions nexus: an empirical analysis from China. Energy Policy, 42, 248-260. Wei, S. J., Xie, Z., & Zhang, X. (2017). From “made in China” to “innovated in China”: Necessity, prospect, and challenges. Journal of Economic Perspectives, 31(1), 49-70. Yang, L. F., Xu, J. H., & Neuhäusler, P. (2013). Electric vehicle technology in China: An exploratory patent analysis. World Patent Information, 35(4), 305-312. Yeo, W., Kim, S., Lee, J. M., & Kang, J. (2014). Aggregative and stochastic model of main path identification: a case study on graphene. Scientometrics, 98, 633-655. |
Description: | 碩士 國立政治大學 經濟學系 110258030 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110258030 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
803001.pdf | | 4651Kb | Adobe PDF2 | 17 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|