Reference: | [1] S. Kaul, R. Yates, and M. Gruteser,“Real-time status: How often should one update?,”in 2012 Proceedings IEEE INFOCOM, pp. 2731–2735, IEEE, 2012. [2] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information in multisource queueing models,”IEEE Transactions on Communications, vol. 68, no. 8, pp. 5003–5017, 2020. [3] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis, “Age of information of multiple sources with queue management,”in 2015 IEEE international conference on communications (ICC), pp. 5935–5940, IEEE, 2015. [4] R. D. Yates and S. K. Kaul,“The age of information: Real-time status updating by multiple sources,”IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1807–1827, 2018. [5] S. Farazi, A. G. Klein, and D. R. Brown,“Average age of information in multisource self-preemptive status update systems with packet delivery errors,”in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 396–400, IEEE, 2019. [6] E. Najm and E. Telatar,“Status updates in a multi-stream m/g/1/1 preemptive queue,”in IEEE Infocom 2018-Ieee Conference On Computer Communications Workshops (Infocom Wkshps), pp. 124–129, IEEE, 2018. [7] Y. Sun and B. Cyr,“Sampling for data freshness optimization: Non-linear age functions,”Journal of Communications and Networks, vol. 21, no. 3, pp. 204–219, 2019. [8] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff,“Age-optimal sampling and transmission scheduling in multi-source systems,”in Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 121–130, 2019. [9] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff,“Optimal sampling and scheduling for timely status updates in multi-source networks,”IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 4019–4034, 2021. [10] Y.-P. Hsu, E. Modiano, and L. Duan,“Age of information: Design and analysis of optimal scheduling algorithms,”in 2017 IEEE International Symposium on Information Theory (ISIT), pp. 561–565, IEEE, 2017. [11] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,“Minimizing the age of information in broadcast wireless networks,”in 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 844–851, IEEE, 2016. [12] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,“Scheduling policies for minimizing age of information in broadcast wireless networks,”IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2637–2650, 2018. [13] J. Sun, Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu,“Closed-form whittle’s index-enabled random access for timely status update,”IEEE Transactions on Communications, vol. 68, no. 3, pp. 1538–1551, 2019. [14] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu,“Timely status update in wireless uplinks: Analytical solutions with asymptotic optimality,”IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3885–3898, 2019. [15] B. Han, Y. Zhu, Z. Jiang, M. Sun, and H. D. Schotten,“Fairness for freshness: Optimal age of information based ofdma scheduling with minimal knowledge,”IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 7903–7919, 2021. [16] T.-W. Kuo,“Minimum age of information tdma scheduling: Approximation algorithms and hardness results,”IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7652–7671, 2020. [17] Q. He, D. Yuan, and A. Ephremides,“Optimal link scheduling for age minimization in wireless systems,”IEEE Transactions on Information Theory, vol. 64, no. 7, pp. 5381–5394, 2017. [18] T.-W. Kuo,“Competitive analyses of online minimum age of information transmission scheduling,”in IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–8, IEEE, 2022. [19] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus,“Age of information: An introduction and survey,”IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021. |