Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/147033
|
Title: | 無人機區域偵查及目標物件定位策略之技術研究 Technical Research on UAV Area Search and Object Geolocation Strategy |
Authors: | 劉益誠 Liu, Yi-Chen |
Contributors: | 劉吉軒 Liu, Jyi-Shane 劉益誠 Liu, Yi-Chen |
Keywords: | 智慧無人機 區域偵查 平面視覺 距離預測 三角測量 地理座標投影 區域覆蓋路徑規劃 無人機定位策略 特徵比對 Smart UAV Area Search 2D vision Distance Estimation Triangulation Geographic Coordinate Projection Coverage Path Planning UAV Geolocation Strategy Feature Matching |
Date: | 2023 |
Issue Date: | 2023-09-01 15:24:38 (UTC+8) |
Abstract: | 無人機在現今產業發展快速,因其相較於需人員搭載的飛行器有更低的 製造成本、更高的機動性而且減少了駕駛人員傷亡的風險而大量應用於過 往需要人力的工作上。無人機發展初期主要應用於軍事用途上,但隨著技 術逐漸商用化無人機逐漸在民生用途上取得大量的發展,包含在工業、農 業、電影拍攝甚至是競技娛樂都出現了無人機的應用技術。除了無人機硬 體本身的發展外,影像處理的技術發展使無人機能在更多應用場景發揮價 值,尤其是平面視覺的影像處理技術使無人機能夠以平面視覺的相機進行 更多的任務,特別是對於重量有限制而無法搭載大量感測器的微型無人機。 對於微型無人機來說平面相機、GPS、指北針與高度計是常備的感測 器,因此本研究對於偵查區域內目標物件定位任務以微型無人機常備的感 測器發展三項定位策略來達成不同任務環境下的目標偵查與定位。其中, 多點平均定位策略以單目視覺定位模組為主,搭配平面視覺影像及感測器 數據來達成對地上目標物件的定位,並利用了無人機執行任務的連續性對 感測器資料進行校正進而提升定位結果的可靠度。為了降低感測器的依賴 程度,本研究以三角計算的方式發展三角測量定位策略,成功降低感測器 的依賴度以及高度對於定位準確度的影響。影像比對定位策略則是以特徵 比對技術為基礎來達成純影像的定位任務,使無人機在感測器失效的任務 環境下仍能夠達成定位任務。 With the rapid development of unmanned aerial vehicle technology and it’s high mobility, low risk for drone pilot.Unmanned Aerial Vehicle have been used in a variety of applications.In early stage, UAV was mainly used for military purposes.But, with UAV technology became more and more prevalent, UAV widely applied on Manufacturing industry, agriculture and film industry.Beside the UAV technology, the development of image processing also improve development of UAV application.And 2D-vision-based image processing was important especially for micro UAV because of it’s weight limit. For micro UAV, the commonly equipped sensors are a camera, GPS, compass and altimeter. Therefore, this research develop three geolocation strategies using the sensors commonly found on micro drones to achieve target detection and positioning in different mission environments. Among them, the multi-point averaging geolocation strategy focuses on the monocular visual positioning module, using plane visual images and sensor data to locate ground target.This strategy also calibrate the sensor data to improve the reliability of the positioning results. To reduce sensor dependency, a triangulation geolocation strategy was developed using trigonometric calculations, successfully reducing the reliance on sensors and mitigating the impact of altitude on positioning accuracy. The image matching geolocation strategy is based on feature matching techniques to achieve pure imagebased positioning tasks, enabling drones to perform positioning tasks even in mission environments where sensors may fail. |
Reference: | [1] Robot operating system (ros) https://www.ros.org/. [2] Ros-mobile http://wiki.ros.org/ros-mobile. [3] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation, 2(1):14–23, 1986. [4] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986. [5] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002. [6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self- supervised interest point detection and description. Computer Vision and Pattern Recognition(CVPR), 2018. [7] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous areas by a mobile robot. International Conference on Robotics and Automation, 2:1927–1933, 2001. [8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. NeurIPS, 27, 2014. [9] Fatih Gökçe, Göktürk Üçoluk, Erol ̧Sahin, and Sinan Kalkan. Vision-based detection and distance estimation of micro unmanned aerial vehicles. Sensors, 15(9):23805–23846, 2015. [10] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’s. International Journal of Automation and Computing, 11(347–352), 2014. [11] Luc Van Gool Herbert Bay, Tinne Tuytelaars. Surf: Speeded up robust features. Computer Vision –ECCV, 3951, 2006. [12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional adversarial networks. International Journal of Computer Vision, 2018. [13] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy, 87:43–55, 2013. [14] Ragab Khalil. The accuracy of gis tools for transforming assumed total station surveys to real world coordinates. Geographic Information System, 5(486-491), 2013. [15] Arturo De la Escalera and Jose María Armingol. Automatic chessboard detection for intrinsic and extrinsic camera parameter calibration. Sensors, 10(3)(2027-2044), 2010. [16] Chaozhen Lan, Wanjie Lu, Junming Yu, and Qing Xu. Deep learning algorithm for feature matching of cross modality remote sensing images. Acta Geodaetica et Cartographica Sinica, 50(2):14–23, 2021. [17] Zuoyue Li, Jan Dirk Wegner, and Aurelien Lucchi. Topological map extraction from overhead images. International Conference on Computer Vision, 2019. [18] Xiao Ling, Yongjun Zhang, Jinxin Xiong, Xu Huang, and Zhipeng Chen. An image matching algorithm integrating global srtm and image segmentation for multi-source satellite imagery. Remote Sensing, 8, 2016. [19] D.G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(91–110), 2004. [20] L. H. Nam, L. Huang, X. J. Li, and J. F. Xu. An approach for coverage path planning for uavs. IEEE 14th International Workshop on Advanced Motion Control, (411-416), 2016. [21] Donggeun Oh and Junghee Han. Smart search system of autonomous flight uavs for disaster rescue. Sensors, 21(20), 2021. [22] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. International Conference on Robotics and Automation, 2011. [23] Parrot. Anafi https://www.parrot.com/en/drones/anafi. [24] Parrot. Bebop2 https://www.parrot.com/en/drones. [25] Shashikant Prasad. pix2pix gan for generating maps given satellite images using pytorch, https:// medium.com/ @skpd/ pix2pix-gan-for-generating-map-given-satellite- images-using-pytorch-6e50c318673a. [26] Wahyu Rahmaniar, Wen-June Wang, Wahyu Caesarendra, Adam Glowacz, Krzysztof Oprz ̨edkiewicz, Maciej Sułowicz, and Muhammad Irfan. Distance measurement of unmanned aerial vehicles using vision-based systems in unknown environments. Electronics, 10(14), 2021. [27] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient alternative to sift or surf. Proceedings of the IEEE International Conference on Computer Vision, (2564-2571), 2011. [28] Sajid Saleem, Abdul Bais, and Robert Sablatnig. Towards feature points based image matching between satellite imagery and aerial photographs of agriculture land. Computers and Electronics in Agriculture, 126:12–20, 2016. [29] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue: Learning feature matching with graph neural networks. Computer Vision and Pattern Recognition(CVPR), 2020. [30] Chris Simpson. Behavior trees for ai: How they work, https://www.gamedeveloper.com/ programming/behavior-trees-for-ai-how-they-work. [31] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free local feature matching with transformers. Computer Vision and Pattern Recognition(CVPR), 2021. [32] Dengqing Tang, Tianjiang Hu, Zhaowei Ma, Lincheng Shen, and Chongyu Pan. Apriltag array-aided extrinsic calibration of camera–laser multi-sensor system. Robotics and Biomimetics, 3(13), 2016. [33] Jinbiao Yuan, Zhenbao Liu, Yeda Lian, Lulu Chen, Qiang An, Lina Wang, and Bodi Ma. Global optimization of uav area coverage path planning based on good point set and genetic algorithm. Aerospace, 9(2), 2022. [34] Xiaoyue Zhao, Fangling Pu, Zhihang Wang, Hongyu Chen, and Zhaozhuo Xu. Detection, tracking, and geolocation of moving vehicle from uav using monocular camera. IEEE Access, 7:101160–101170, 2019. [35] 佐翼科技. Dx30-w1 https://www.droxotech.com/. [36] 內政部國土測繪中心. 國土測繪圖資服務雲 https://maps.nlsc.gov.tw. [37] 擎壤科技. Eg2 https://www.earthgen.com.tw/eg2. |
Description: | 碩士 國立政治大學 資訊科學系 110753136 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110753136 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
313601.pdf | | 15598Kb | Adobe PDF2 | 50 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|