Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/146899
|
Title: | 分散式系統Kafka的延展性研究:以支付應用為例 An empirical study on the scalability of Kafka in a scenario of online payments |
Authors: | 江品萱 Chiang, Pin-Hsuan |
Contributors: | 陳恭 郭桐惟 Chen, Kung Kuo, Tung-Wei 江品萱 Chiang, Pin-Hsuan |
Keywords: | 分散式系統 系統延展性 支付清算 帳務驗證 Kafka Distributed system System scalability Online payments Account verification |
Date: | 2023 |
Issue Date: | 2023-09-01 14:56:05 (UTC+8) |
Abstract: | 近年來,科技的發展使得金融支付越來越方便,在金流快速流通的現代社會中,銀行每日接收許多轉帳、匯款等多樣的交易需求,交易量龐大且複雜,一但發生系統主機設備故障即有可能造成交易無法即時進行。在過去,銀行仰賴集中式主機系統來處理交易清算,然而集中式主機容易發生系統癱瘓、安全風險、量能極限等問題,且擴展成本及維護成本大,在設備及人力上皆須負擔相對較高的費用。本研究以分散式系統Kafka為基礎,欲探討在金融應用場景中,透過分散式系統的延展性特性和可靠性,是否適合應用於銀行的交易清算場景中。分散式系統的應用能否能因應交易量增加,而設計出一具可擴展性、容錯性且保持系統效能良好的帳務驗證系統,解決以往集中式主機面臨的問題。研究結果顯示透過Kafka的延展性特性可以使系統突破單一節點在交易量增加時可承受之極限,並經由兩階段帳務驗證方式確保銀行餘額的正確性和批次處理多筆小額交易達到效率提升。此外,透過Kafka機制確保所有進入系統的交易都能完整處理,有效防止因系統異常而導致的交易資料處理不完整,進而引發銀行餘額錯誤的情況發生。同時,透過分散式系統的備援機制,在故障發生時快速處理異常,保證交易處理即時性。總結而言,透過運用Kafka系統的延展性及備援機制,實作系統不僅能應對交易量的增加,更能夠確保銀行清算餘額的正確性、完整性以及即時性,解決了過去集中式系統可能碰到的問題,且維持系統的運作效率。 In recent years, the advancement of technology has made financial payments increasingly convenient. In the fast-paced modern society where money flows rapidly, banks receive numerous transaction requests daily, including transfers and remittances. The transaction volume is enormous and complex. However, any system failure can potentially cause delays in processing transactions and result in substantial costs. This study is based on the distributed system Kafka and aims to explore the application of distributed systems in the financial domain. In my research, I investigate whether the increasing transaction volume can be handled by designing a scalable, fault-tolerant, and high-performance account verification system based on Kafka. The goal is to address the challenges faced by centralized systems in the past. The result of the designed system demonstrates that the scalability of Kafka enables the system to surpass the limits of processing and increased transaction volume. By designing a two-phase account verification and batch processing approach, the accuracy of bank balances is ensured and system efficiency is increased. Additionally, the Kafka mechanism guarantees the complete processing of all transactions, avoiding discrepancies in bank balances due to system anomalies. It also provides fast backup and handling of abnormal situations, ensuring real-time transaction processing in the event of failures. |
Reference: | Gururajapathy, S. S., Mokhlis, H., & Illias, H. A. (2017). Fault location and detection techniques in power distribution systems with distributed generation: A review. Renewable and Sustainable Energy Reviews, 74, 949–958. Kersting, W. H. (2017). Distribution system modeling and analysis. CRC press. Kumar, M., & Singh, C. (2017). Building Data Streaming Applications with Apache Kafka. Packt Publishing Ltd. Narkhede, N., Shapira, G., & Palino, T. (2017). Kafka: the definitive guide: real-time data and stream processing at scale. “ O’Reilly Media, Inc.” Shapira, G., Palino, T., Sivaram, R., & Petty, K. (2021). Kafka: the definitive guide. “ O’Reilly Media, Inc.” Shree, R., Choudhury, T., Gupta, S. C., & Kumar, P. (2017). KAFKA: The modern platform for data management and analysis in big data domain. 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 1–5. Vohra, D., & Vohra, D. (2016). Apache kafka. Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools, 339–347. Wang, G., Chen, L., Dikshit, A., Gustafson, J., Chen, B., Sax, M. J., Roesler, J., Blee-Goldman, S., Cadonna, B., & Mehta, A. (2021). Consistency and completeness: Rethinking distributed stream processing in apache kafka. Proceedings of the 2021 International Conference on Management of Data, 2602–2613. Wu, H. (2019). Research proposal: Reliability evaluation of the apache kafka streaming system. 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 112–113. Wu, H., Shang, Z., & Wolter, K. (2019). Performance prediction for the apache kafka messaging system. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 154–161. |
Description: | 碩士 國立政治大學 資訊管理學系 111356023 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111356023 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
602301.pdf | | 1975Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|