Reference: | Afianian, A., Niksefat, S., Sadeghiyan, B., and Baptiste, D. (2019). Malware dynamic analysis evasion techniques: A survey. ACM Computing Surveys (CSUR), 52(6):1–28. angavarapu, T. and Patil, N. (2019). A novel filter–wrapper hybrid greedy ensemble approach optimized using the genetic algorithm to reduce the dimensionality of high- dimensional biomedical datasets. Applied Soft Computing, 81:105538. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., and Siemens, C. (2014). Drebin: Effective and explainable detection of android malware in your pocket. Ndss, 14:23–26. Babaagba, K. O. and Adesanya, S. O. (2019). A study on the effect of feature selection on malware analysis using machine learning. In Proceedings of the 2019 8th international conference on educational and information technology, pages 51–55. Bacci, A., Bartoli, A., Martinelli, F., Medvet, E., Mercaldo, F., Visaggio, C. A., et al. (2018). Impact of code obfuscation on android malware detection based on static and dynamic analysis. ICISSP, pages 379–385. Bakour, K. and Ünver, H. M. (2020). Visdroid: Android malware classification based on local and global image features, bag of visual words and machine learning techniques. Neural Computing and Applications, 33:3133–3153. Bontchev, V. (2005). Current status of the caro malware naming scheme. Virus Bulletin, 15. Dib, M. (2021). On Leveraging Next-Generation Deep Learning Techniques for IoT Mal- ware Classification, Family Attribution and Lineage Analysis. PhD thesis, Concordia University. Ducau, F. N., Rudd, E. M., Heppner, T. M., Long, A., and Berlin, K. (2019). Automatic malware description via attribute tagging and similarity embedding. arXiv preprint arXiv:1905.06262. D’Angelo, G., Ficco, M., and Palmieri, F. (2021). Association rule-based malware classification using common subsequences of api calls. Applied Soft Computing, 105:107234. Fatima, A., Maurya, R., Dutta, M. K., Burget, R., and Masek, J. (2019). ndroid mal- ware detection using genetic algorithm based optimized feature selection and machine learning. 42nd International conference on telecommunications and signal processing (TSP), pages 220–223. Fejrskov, M., Vasilomanolakis, E., and Pedersen, J. M. (2022). A study on the use of 3rd party dns resolvers for malware filtering or censorship circumvention. ICT Systems Security and Privacy Protection, 648. Garg, V. and Yadav, R. K. (2020). Malware detection using multilevel ensemble super- vised learning. In International Conference on Communication and Intelligent Systems, pages 219–231. Springer. Hamid, I. R. A., Khalid, N. S., Abdullah, N. A., Rahman, N. H. A., and Wen, C. C. (2017). Android malware classification using k-means clustering algorithm. IOP Conference Series: Materials Science and Engineering, 226:012105. Holland, J. H. (1922). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. Hsiao, S.-W., Sun, Y. S., and Chen, M. C. (2016). Behavior grouping of android malware family. 2016 IEEE International Conference on Communications (ICC), pages 1–6. Hurier, M., Allix, K., Bissyandé, T. F., Klein, J., and Le Traon, Y. (2016). n the lack of consensus in anti-virus decisions: Metrics and insights on building ground truths of android malware. Detection of Intrusions and Malware, and Vulnerability Assessment: 13th International Conference DIMVA, pages 142–162. Hurier, M., Suarez-Tangil, G., Dash, S. K., Bissyandé, T. F., Le Traon, Y., Klein, J., and Cavallaro, L. (2017). Euphony: Harmonious unification of cacophonous anti-virus ven- dor labels for android malware. International Conference on Mining Software Reposi- tories, 14:425–435. Jang, J., Brumley, D., and Venkataraman, S. (2011). Bitshred: feature hashing malware for scalable triage and semantic analysis. Proceedings of the 18th ACM conference on Computer and communications security, pages 309–320. Kotzias, P., Matic, S., Rivera, R., and Caballero, J. (2015). Certified pup: abuse in authen- ticode code signing. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 465–478. Kumar, S. and Mittal, S. K. (2020). Email spam and malware filtering using machine learning and its applications. In Performance Management, pages 25–32. CRC Press. Laboratories, N. A. R. (2021). Narlabs. https://owl.nchc.org.tw/malware.php. Pektaş, A. and Acarman, T. (2018). Malware classification based on api calls and be- haviour analysis. IET Information Security, 12(2):107–117. Perdisci, R. and U, M. (2012). Vamo: towards a fully automated malware clustering va- lidity analysis. Proceedings of the 28th Annual Computer Security Applications Con- ference, pages 329–338. Salem, A., Banescu, s., and Pretschner, A. (2021). Maat: Automatically analyzing virusto- tal for accurate labeling and effective malware detection. ACM Transactions on Privacy and Security (TOPS), 24(4):1–35. Sebastin, M., Rivera, R., Kotzias, P., and Caballero, J. (2016). Avclass: A tool for massive malware labeling. Research in Attacks, Intrusions, and Defenses, 9854:230––253. Shukla, A., Pandey, H. M., and Mehrotra, D. (2015). Comparative review of selection techniques in genetic algorithm. International Conference on Futuristic Trends on Com- putational Analysis and Knowledge Management (ABLAZE), pages 515–519. SonicWall (2023). 2022 cyber threat report. Sung, A. H., Xu, J., Chavez, P., and Mukkamala, S. (2004). Static analyzer of vicious executables (save). 20th Annual Computer Security Applications Conference, 326–334. Usharani, S., Bala, P. M., and Mary, M. M. J. (2021). Dynamic analysis on crypto- ransomware by using machine learning: Gandcrab ransomware. Journal of Physics: Conference Series, 1717(1):012024. Virustotal (2023). Virustotal. Visalakshi, P. (2020). Detecting android malware using an improved filter based technique in embedded software. Microprocessors and Microsystems, 76:103115. Wu, Z. and Chen, Y. (2001). Genetic algorithm based selective neural network ensemble. IJCAI-01: proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, Seattle, Washington. Yoo, S., Kim, S., Kim, S., and Kang, B. B. (2021). Ai-hydra: Advanced hybrid approach using random forest and deep learning for malware classification. Information Sciences, 546:420–435. Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., and Wang, G. (2020). Measuring and modeling the label dynamics of online anti-malware engines. USENIX Security Symposium, pages 2361–23 |