Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/146866
|
Title: | 企業人工智慧平台的開發管理之研究—以 F 公司為例 An Empirical Study of the Development Management of Artificial Intelligence Platform-A Case Study of F Company |
Authors: | 樓孝剛 Lou, Hsiao-Kang |
Contributors: | 吳豐祥 Wu, Feng-Shang 樓孝剛 Lou, Hsiao-Kang |
Keywords: | 人工智慧 技術創新 新產品開發 開發團隊 軟體開發 敏捷開發 創新管理 黑盒子 紡織業 平台 Artificial intelligence Technical innovation New product development Development team Software development Agile development Innovation management Black box Textile industry Platform |
Date: | 2023 |
Issue Date: | 2023-09-01 14:48:48 (UTC+8) |
Abstract: | 隨著人工智慧走出了實驗室,生活中越來越常見到人工智慧的應用,越來越多國家與企業發現其未來性並願意投入大量資源在人工智慧領域上,各國想要利用人工智慧增強其國力,企業則想要在此領域創造出破壞式的創新。而台灣擁有還不錯的科技實力,因此,人工智慧自然是重點關注的新技術,但從初步的觀察中認知到,我們在這方面的發展上,仍面臨到了以下的二點障礙: 1.台灣的科技產業過往一直偏重硬體而不是軟體,對於軟體的概念相對較為薄弱。 2.仰賴過去硬體成功的經驗在面對人工智慧時,很容易會走向創新者的窘境。 根據上述二點,本研究認為若要有效開發人工智慧,勢必要用不一樣的管理思維來面對它。 然而,有關人工智慧的開發管理之相關研究仍然很少,因此,本研究的主要目的即希望能彌補此一學術缺口。也因為本研究的本質上屬於探索性的研究,所以質性個案研究會被認為是比較適合的研究方法之一,本研究根據研究目標與文獻探討的結果,提出了一個包含「技術創新管理」、「新產品開發管理」和「開發團隊組織方式與管理」等三個構面的研究架構,並依此架構選擇一家涉入人工智慧平台開發的企業進行深入的個案研究,所得到的主要結論如下: 結論一:企業在進行人工智慧的技術創新上,會先透過與外部合作的方式來取得技術,之後再透過內部自主學習與逐步累積研發能力的方式,來讓人工智慧技術在企業內部紮根。 結論二:企業於人工智慧平台產品的開發上,在發想階段,會著重於需求上的確認;在測試階段,會採取「半打開黑盒子」的方式,來平衡人工智慧訓練績效與投入成本;在商業化階段,則會強化與客戶的溝通,以取得其對新平台產品的信任。 結論三:企業的人工智慧團隊在開發平台產品的過程中,會透過其團隊主管的領導力來整合內外部團隊多元背景成員的不同意見,以提升人工智慧模型的訓練和實驗之效益。 結論四:企業以人工智慧開發團隊做為企業研發能力的核心,因而會強化其人工智慧技術相關員工的招募機制,並留意人工智慧開發團隊成員的選擇,以提升其技術研發能耐。 結論五:企業的人工智慧平台產品之開發過程中,會投入大量的時間進行人工智慧的訓練與實驗,但也會因人工智慧高度實驗性與開發時程難以協調與規劃的關係,一方面在開發流程管理上會採用不同於傳統的「講究時程控制」的方式。另一方面,會讓人工智慧團隊主管獨立運作,以提升開發的順暢度。 本論文最後並提出學術上和實務上的意涵,以及給後續研究者的建議。 As artificial intelligence has stepped out of the laboratory, we can see the applications of artificial intelligence more and more in daily life. it’s making more and more countries and enterprises invest a lot of resources in the field of artificial intelligence, countries want to use artificial intelligence to enhance national power and enterprises want to create disruptive innovations. Taiwan has a fairly good technological strength, so artificial intelligence is naturally a new technology to focus on. However, from preliminary observations, we know that we still face up to the following obstacles in the development of this field: 1.The technological industry of Taiwan has always emphasized hardware rather than software in the past, and the concept of software is relatively weak. 2.Relying on the past successful experience of hardware in the face of artificial intelligence, it is easy to fall into the innovator`s dilemma. According to the above two points, this study believes that if we want to develop artificial intelligence effectively, we must use different way of management thinking to treat the artificial intelligence. However, there are very few researches on the development and management of artificial intelligence, the main purpose of this study if to fill this academic gap. Because this dissertation is an exploratory research in nature, qualitative research method is considered to be one of the more suitable research methods. According to the research objectives and the results of the literature review, this thesis issues a research framework includes three constructs: “Technology Innovation Management”, “New Product Development Management” and “Organization and Management of Development Team”, and select a company involves in the development of artificial intelligence to conduct an in-depth case study, then obtain the following conclusion: Conclusion 1: When enterprises conduct the technology innovation of artificial intelligence. At first, they will obtain technology through the way of external cooperation, and then through the ways of internal self-learning and gradually accumulate development capabilities, so that artificial intelligence technology can root in the enterprise. Conclusion 2: During the development process of artificial intelligence platform products, the enterprises tend to emphasize the confirmation of needs in the concept development stage; adopt the “half-opening black box” way to balance AI training performance and investment cost; and intensify the communication with clients to enhance their trust towards the new platform product. Conclusion 3: In the process of developing platform products, the leader of artificial intelligence team will use the leadership to integrate the different opinions of the internal and external team members with diverse backgrounds, so that improving the utility of artificial intelligence model training and experimentation. Conclusion 4: The enterprise`s artificial intelligence development team is the core of the enterprise`s research and development capabilities, so they will strengthen their recruitment mechanism, and keep an eye on the selection of artificial intelligence development team members to improve their technology capabilities. Conclusion 5: In the development process of the artificial intelligence platform products, it will put a lot of time on training and experiments, but also due to the highly experimental nature of artificial intelligence and hardly plan the development schedule, on the one hand, the management of development process will use a different method from the traditional method, which is emphasizing schedule control, on the other hand, the enterprise will let the leader of artificial intelligence team operates independently to improve the smoothness of development. Finally, the thesis addresses the academic implication of this study and makes recommendations for industrial practices and future studies. |
Reference: | 一、外文文獻 1.小島敏彥. (1996). 新製品開發管理. 日刊工業新聞社. 2.Abernathy, W. J., & Clark, K. B. (1985). Innovation: Mapping the Winds of Creative Destruction. Research Policy, 14(1), 3-22. 3.Abernathy, W. J., & Utterback, J. M. (1978). Patterns of Industrial Innovation. Technology Review, 80(7), 40-47. 4.Adadi, A., & Berrada, M. (2018). Peeking inside the Black-Box: A Survey on Explainable Artificial Intelligence (Xai). IEEE Access, 6, 52138-52160. 5.Adler, P. S., & Shenhar, A. (1990). Adapting Your Technological Base: The Organizational Challenge. MIT Sloan Management Review, 32(1), 25. 6.Afuah, A. (2020). Innovation Management-Strategies, Implementation, and Profits. 7.Aksoy, A., Öztürk, N., & Sucky, E. (2014). Demand Forecasting for Apparel Manufacturers by Using Neuro-Fuzzy Techniques. Journal of Modelling in Management, 9(1), 18-35. 8.Anderson, D. J. (2010). Kanban: Successful Evolutionary Change for Your Technology Business. Blue Hole Press. 9.Anderson, P., & Tushman, M. L. (2018). Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change. In Organizational Innovation (pp. 373-402). Routledge. 10.Armstrong, G., Adam, S., Denize, S., & Kotler, P. (2014). Principles of Marketing. Pearson Australia. 11.Balachandra, R., & Friar, J. H. (1997). Factors for Success in R&D Projects and New Product Innovation: A Contextual Framework. IEEE Transactions on Engineering Management, 44(3), 276-287. https://doi.org/10.1109/17.618169 12.Barczak, G. (1995). New Product Strategy, Structure, Process, and Performance in the Telecommunications Industry. Journal of Product Innovation Management, 12(3), 224-234. 13.Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . . . Jeffries, R. (2001). Manifesto for Agile Software Development. 14.Benington, H. D. (1983). Production of Large Computer Programs. Annals of the History of Computing, 5(4), 350-361. https://doi.org/10.1109/MAHC.1983.10102 15.Bettenhausen, K. L. (1991). Five Years of Groups Research: What We Have Learned and What Needs to Be Addressed. Journal of Management, 17(2), 345-381. 16.Booz, A. (1982). New Products Management for the 1980s New York: Booz. Allen & Hamilton. 17.Charniak, E., McDermott, D., & McDermott, D. V. (1985). Introduction to Artificial Intelligence. Addison-Wesley. https://books.google.com.tw/books?id=745QAAAAMAAJ 18.Chege, S. M., & Wang, D. (2020). The Influence of Technology Innovation on Sme Performance through Environmental Sustainability Practices in Kenya. Technology in Society, 60, 101210. 19.Chen, K.-M., & Liu, R.-J. (2005). Interface Strategies in Modular Product Innovation. Technovation, 25(7), 771-782. 20.Christensen, C. M. (2013). The Innovator`s Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press. 21.Christensen, J. F. (1995). Asset Profiles for Technological Innovation. Research Policy, 24(5), 727-745. 22.Clark, J., & Guy, K. (1998). Innovation and Competitiveness: A Review: Practitioners` Forum. Technology Analysis & Strategic Management, 10(3), 363-395. 23.Clark, K. B., & Wheelwright, S. C. (1992). Organizing and Leading “Heavyweight” Development Teams. California Management Review, 34(3), 9-28. 24.Coccia, M. (2017). Classifications of Innovations Survey and Future Directions. ArXiv. 25.Cooper, R. G. (1990). Stage-Gate Systems: A New Tool for Managing New Products. Business Horizons, 33(3), 44-54. 26.Cooper, R. G. (2019). The Drivers of Success in New-Product Development. Industrial Marketing Management, 76, 36-47. 27.Cooper, R. G., & Kleinschmidt, E. J. (1986). An Investigation into the New Product Process: Steps, Deficiencies, and Impact. Journal of Product Innovation Management, 3(2), 71-85. 28.Cooper, R. G., & Kleinschmidt, E. J. (1995). Benchmarking the Firm`s Critical Success Factors in New Product Development. Journal of Product Innovation Management, 12(5), 374-391. https://doi.org/https://doi.org/10.1016/0737-6782(95)00059-3 29.Crawford, C. M., & Di Benedetto, C. A. (2011). New Products Management. McGraw-Hill New York. 30.Crossan, M. M., & Apaydin, M. (2010). A Multi‐Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature. Journal of Management Studies, 47(6), 1154-1191. 31.Damanpour, F. (1991). Organizational Innovation: A Meta-Analysis of Effects of Determinants and Moderators. Academy of Management Journal, 34(3), 555-590. 32.DeGrace, P., & Stahl, L. H. (1990). Wicked Problems, Righteous Solutions. Yourdon Press. 33.Denison, D. R., Hart, S. L., & Kahn, J. A. (1996). From Chimneys to Cross-Functional Teams: Developing and Validating a Diagnostic Model. Academy of Management Journal, 39(4), 1005-1023. 34.Denning, S. (2012). Radical Management. 35.Dougherty, D. (1992). Interpretive Barriers to Successful Product Innovation in Large Firms. Organization Science, 3(2), 179-202. 36.Drucker, P. (2014). Innovation and Entrepreneurship. Routledge. 37.Durand, T. (1992). Dual Technological Trees: Assessing the Intensity and Strategic Significance of Technological Change. Research Policy, 21(4), 361-380. 38.Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., . . . Eirug, A. (2021). Artificial Intelligence (Ai): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. International Journal of Information Management, 57, 101994. 39.Edison, H., Bin Ali, N., & Torkar, R. (2013). Towards Innovation Measurement in the Software Industry. Journal of Systems and Software, 86(5), 1390-1407. 40.Ford, L. (1987). Artificial Intelligence and Software Engineering: A Tutorial Introduction to Their Relationship. Artificial Intelligence Review, 1(4), 255-273. 41.Ford, R. C., & Randolph, W. A. (1992). Cross-Functional Structures: A Review and Integration of Matrix Organization and Project Management. Journal of Management, 18(2), 267-294. 42.Freeman, C. (1994). The Economics of Technical Change. Cambridge Journal of Economics, 18(5), 463-514. http://www.jstor.org.autorpa.lib.nccu.edu.tw/stable/24231814 43.Garcia, R., & Calantone, R. (2002). A Critical Look at Technological Innovation Typology and Innovativeness Terminology: A Literature Review. Journal of Product Innovation Management, 19(2), 110-132. 44.Getman, R. R., Green, D. N., Bala, K., Mall, U., Rawat, N., Appasamy, S., & Hariharan, B. (2021). Machine Learning (Ml) for Tracking Fashion Trends: Documenting the Frequency of the Baseball Cap on Social Media and the Runway. Clothing and Textiles Research Journal, 39(4), 281-296. 45.Gobeli, D. H., & Brown, D. J. (1987). Analyzing Product Innovations. Research Management, 30(4), 25-31. 46.Goldratt, E. M. (1990). Theory of Constraints. North River Croton-on-Hudson. 47.Group, S. (2015). Chaos Report 2015. The Standish Group International, Inc, 1-13. 48.Guan, J. C., Yam, R. C., Mok, C. K., & Ma, N. (2006). A Study of the Relationship between Competitiveness and Technological Innovation Capability Based on Dea Models. European Journal of Operational Research, 170(3), 971-986. 49.Gupta, A. K., Raj, S., & Wilemon, D. (1986). A Model for Studying R&D–Marketing Interface in the Product Innovation Process. Journal of Marketing, 50(2), 7-17. 50.Haugeland, J. (1989). Artificial Intelligence: The Very Idea. MIT press. 51.Henderson, R. M., & Clark, K. B. (1990). Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms. Administrative Science Quarterly, 9-30. 52.Hsiao, S. W., Lee, C. H., Chen, R. Q., & Yen, C. H. (2017). An Intelligent System for Fashion Colour Prediction Based on Fuzzy C‐Means and Gray Theory. Color Research & Application, 42(2), 273-285. 53.Ieee Standard for Developing Software Life Cycle Processes. (1996). IEEE, 1-106. https://doi.org/10.1109/IEEESTD.1996.79663 54.Institute, P. M. (2021). A Guide to the Project Management Body of Knowledge (Pmbok Guide) (7 ed.). Project Management Institute. 55.Israel, B., Tran, Pavlovich. (2023). Me, Myself and Ai - Artificial Intelligence. 56.Jackson, S. E., May, K. E., Whitney, K., Guzzo, R. A., & Salas, E. (1995). Understanding the Dynamics of Diversity in Decision-Making Teams. Team Effectiveness and Decision Making in Organizations, 204, 261. 57.Jassawalla, A. R., & Sashittal, H. C. (1999). Building Collaborative Cross-Functional New Product Teams. Academy of Management Perspectives, 13(3), 50-63. 58.Jing, J., Wang, Z., Rätsch, M., & Zhang, H. (2022). Mobile-Unet: An Efficient Convolutional Neural Network for Fabric Defect Detection. Textile Research Journal, 92(1-2), 30-42. 59.Khalil, T. M. (2000). Management of Technology: The Key to Competitiveness and Wealth Creation. McGraw-Hill. 60.Khan, B., Wang, Z., Han, F., Iqbal, A., & Masood, R. J. (2017). Fabric Weave Pattern and Yarn Color Recognition and Classification Using a Deep Elm Network. Algorithms, 10(4), 117. 61.Kleinschmidt, E. J., & Cooper, R. G. (1991). The Impact of Product Innovativeness on Performance. Journal of Product Innovation Management, 8(4), 240-251. 62.Kostamo, J. (2021). Considering Eu Regulations During Npd Process of Ai Solutions for Healthcare. 63.Kurniawan, H., Sofianti, T. D., Pratama, A. T., & Tanaya, P. I. (2014). Optimizing Production Scheduling Using Genetic Algorithm in Textile Factory. Journal of System and Management Sciences, 4(4), 27-44. 64.Kurzweil, R., Richter, R., Kurzweil, R., & Schneider, M. L. (1990). The Age of Intelligent Machines (Vol. 580). MIT press Cambridge, Massachusetts. 65.Larman, C., & Basili, V. R. (2003). Iterative and Incremental Developments. A Brief History. Computer, 36(6), 47-56. 66.Lau, A. K., Yam, R. C., & Tang, E. P. (2010). The Impact of Technological Innovation Capabilities on Innovation Performance: An Empirical Study in Hong Kong. Journal of Science and Technology Policy in China. 67.Lee, J. Y., Swink, M., & Pandejpong, T. (2011). The Roles of Worker Expertise, Information Sharing Quality, and Psychological Safety in Manufacturing Process Innovation: An Intellectual Capital Perspective. Production and Operations Management, 20(4), 556-570. 68.Lester, D. H. (1998). Critical Success Factors for New Product Development. Research-Technology Management, 41(1), 36-43. 69.Liao, S.-h., Fei, W.-C., & Chen, C.-C. (2007). Knowledge Sharing, Absorptive Capacity, and Innovation Capability: An Empirical Study of Taiwan`s Knowledge-Intensive Industries. Journal of Information Science, 33(3), 340-359. 70.Lin, H. F. (2007). Knowledge Sharing and Firm Innovation Capability: An Empirical Study. International Journal of Manpower. 71.Love, J. H., & Roper, S. (2009). Organizing Innovation: Complementarities between Cross-Functional Teams. Technovation, 29(3), 192-203. 72.Lovelace, K., Shapiro, D. L., & Weingart, L. R. (2001). Maximizing Cross-Functional New Product Teams` Innovativeness and Constraint Adherence: A Conflict Communications Perspective. Academy of Management Journal, 44(4), 779-793. 73.Luger, G. F. (2005). Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Pearson education. 74.Lundvall, B.-A., Dosi, G., & Freeman, C. (1988). Innovation as an Interactive Process: From User-Producer Interaction to the National System of Innovation. 349, 369. 75.Maidique, M. A., & Zirger, B. J. (1984). A Study of Success and Failure in Product Innovation: The Case of the U.S. Electronics Industry. IEEE Transactions on Engineering Management, EM-31(4), 192-203. https://doi.org/10.1109/TEM.1984.6447537 76.McCarthy, J. (2007). What Is Artificial Intelligence? 77.McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), 12-12. 78.McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133. 79.Meyers, P. W., & Tucker, F. G. (1989). Defining Roles for Logistics During Routine and Radical Technological Innovation. Journal of the Academy of Marketing Science, 17(1), 73-82. 80.Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. https://books.google.com.tw/books?id=EoYBngEACAAJ 81.Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine Learning for 5g/B5g Mobile and Wireless Communications: Potential, Limitations, and Future Directions. IEEE Access, 7, 137184-137206. 82.Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems. Pearson education. 83.Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann. 84.Normann, R. (1971). Organizational Innovativeness: Product Variation and Reorientation. Administrative Science Quarterly, 16(2), 203-215. https://doi.org/10.2307/2391830 85.OECD, Communities, S. O. o. t. E., & Union, E. (1997). Proposed Guidelines for Collecting and Interpreting Technological Innovation Data. https://doi.org/doi:https://doi.org/10.1787/9789264192263-en 86.Poole, D., Mackworth, A., & Goebel, R. (1998). Computational Intelligence. 87.PwC. (2017). Sizing the Prize What’s the Real Value of Ai for Your Business and How Can You Capitalise? PwC. 88.Ramos, C., Barreto, R., Mota, B., Gomes, L., Faria, P., & Vale, Z. (2020). Scheduling of a Textile Production Line Integrating Pv Generation Using a Genetic Algorithm. Energy Reports, 6, 148-154. 89.Randel, & Jaussi. (2003). Functional Background Identity, Diversity, and Individual Performance in Cross-Functional Teams. Academy of Management Journal, 46(6), 763-774. 90.Rao, S. S., Nahm, A., Shi, Z., Deng, X., & Syamil, A. (1999). Artificial Intelligence and Expert Systems Applications in New Product Development—a Survey. Journal of Intelligent Manufacturing, 10, 231-244. 91.Rice, M. P., O`Connor, G. C., Peters, L. S., & Morone, J. G. (1998). Managing Discontinuous Innovation. Research-Technology Management, 41(3), 52-58. 92.Rich, E. (2019). Artificial Intelligence 3e (Sie). Tata McGraw-Hill Publ. https://books.google.com.tw/books?id=U9p9zgEACAAJ 93.Robertson, T. S. (1967). The Process of Innovation and the Diffusion of Innovation. Journal of Marketing, 31(1), 14-19. 94.Rochford, L. (1991). Generating and Screening New Products Ideas. Industrial Marketing Management, 20(4), 287-296. 95.Romijn, H., & Albaladejo, M. (2002). Determinants of Innovation Capability in Small Electronics and Software Firms in Southeast England. Research Policy, 31(7), 1053-1067. 96.Royce, W. W. (1987). Managing the Development of Large Software Systems: Concepts and Techniques. Proceedings of the 9th International Conference on Software Engineering, 97.Russell, S. J. (2010). Artificial Intelligence a Modern Approach. Pearson Education, Inc. 98.Samuel, A. L. (2000). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 44(1.2), 206-226. https://doi.org/10.1147/rd.441.0206 99.Schumpeter, J., & Backhaus, U. (2003). The Theory of Economic Development. In Joseph Alois Schumpeter (pp. 61-116). Springer. 100.Schwalbe, K. (2018). Information Technology Project Management. Cengage Learning. https://books.google.com.tw/books?id=63BbtAEACAAJ 101.Siemon, D. (2022). Elaborating Team Roles for Artificial Intelligence-Based Teammates in Human-Ai Collaboration. Group Decision and Negotiation, 31(5), 871-912. 102.Singh, G., Ajitanshu, M., & Dheeraj, S. (2013). An Overview of Artificial Intelligence. SBIT Journal of Science and Technology. 103.Smith, N. A. (2011). Linguistic Structure Prediction (Vol. 4). 104.Soni, N., Sharma, E. K., Singh, N., & Kapoor, A. (2020). Artificial Intelligence in Business: From Research and Innovation to Market Deployment. Procedia Computer Science, 167, 2200-2210. 105.Souder, W. E. (1988). Managing Relations between R&D and Marketing in New Product Development Projects. Journal of Product Innovation Management, 5(1), 6-19. 106.Souder, W. E., & Shrivastava, P. (1985). Towards a Scale for Measuring Technology in New Product Innovations. Research Policy, 14(3), 151-160. 107.Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., . . . Kraus, S. (2016). Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence. 108.Su, J., & Liu, J. (2012). Exploring Critical Factors in China`s Manufacturing Technology Innovation: Based on a Case Study from Cnr Dalian. Journal of Knowledge-Based Innovation in China. 109.Sutherland, J. (2004). Agile Development: Lessons Learned from the First Scrum. Cutter Agile Project Management Advisory Service, 5(20), 1-4. 110.Takeuchi, H., & Nonaka, I. (1986). The New New Product Development Game. Harvard Business Review, 64(1), 137-146. 111.Turing, A. M. (2009). Computing Machinery and Intelligence. In Parsing the Turing Test (pp. 23-65). Springer. 112.Tushman, & Rosenkopf. (1992). Organizational Determinants of Technological Change: Toward a Sociology of Technological Evolution. Research in Organizational Behavior, 14, 311-347. 113.Ulrich, K., & Eppinger, S. (2011). Ebook: Product Design and Development. McGraw Hill. 114.Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212-227. 115.Vinge, V. (1993). The Coming Technological Singularity: How to Survive in the Post-Human Era. Science Fiction Criticism, 352-363. 116.Von Neumann, J. (1993). First Draft of a Report on the Edvac. IEEE Annals of the History of Computing, 15(4), 27-75. 117.Webber, S. S. (2002). Leadership and Trust Facilitating Cross‐Functional Team Success. Journal of Management Development. 118.Winston, P. H. (1992). Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc. 119.Yin, R. K. (2009). Case Study Research: Design and Methods (Vol. 5). sage. 120.Yoon, E., & Lilien, G. L. (1985). New Industrial Product Performance: The Effects of Market Characteristics and Strategy. Journal of Product Innovation Management, 2(3), 134-144. 二、中文文獻 1.三宅陽一郎, & 備前やすのり. (2019)。 全圖解!AI知識一本通:用故事讓你三小時輕鬆搞懂人工智慧。 張嘉芬, (初版)。 新北市: 聯經出版公司事業股份有限公司。 2.三津村直貴. (2018)。 圖解AI人工智慧大未來 : 關於人工智慧一定要懂得96件事。 陳子安編, 關於人工智慧一定要懂得96件事 (初版)。 臺北市: 旗標科技股份有限公司。 3.大野耐一. (2011)。 追求超脫規模的經營 : 大野耐一談豐田生產方式。 精實管理系列 ; 13。 臺北市: 財團法人中衛發展中心。 4.小川雄太郎. (2019)。 實戰人工智慧之深度強化學習|使用pytorch X Python (許郁文翻譯)。 (初版)。 臺北市: 碁峰資訊。 5.古明地正俊, & 長谷佳明. (2018)。 AI人工智慧的現在.未來進行式 : 一目了然! 林仁惠編, 最新發展應用實例,6大核心觀念全面掌握AI,生活.商業.經濟.社會大革新! (初版)。 臺北市: 遠流出版事業股份有限公司。 6.布魯克斯, 錢一一, & Brooks, F. P., Jr. (2004)。 人月神話 : 軟體專案管理之道 / Frederick P. Brooks, Jr.著 ; 錢一一譯。 經營管理 ; 23. (初版)。 台北市: 經濟新潮社出版。 7.何晗. (2020)。 Nlp工程師養成術: 自然語言處理入門。 (初版)。 新北市: 博碩文化。 8.呂克明. (2009)。 軟體專案管理。 (初版)。 臺北市: 學貫行銷。 9.李友專, 謝其濬, & 林怡秀. (2018)。 AI醫療大未來。 台灣第一本智慧醫療關鍵報告 (初版)。 新北市: 好人出版。 10.周碩. (2017)。 敏捷方程式:成就敏捷之路。 (初版)。 新北市: 博碩文化。 11.林佩欣. (2021)。 紡織與服飾產業的策略創新議題之研究。 商學研究所 。 台北市: 國立臺灣大學。 未出版博士論文。 12.林信惠&黃明祥. (2002)。 軟體專案管理研究架構及趨勢。 資訊管理研究。 第四卷第一期 (31-64頁)。 13.林建煌. (2020)。 管理學。 (六版)。 臺北市: 林建煌。 14.洪錦魁. (2023)。 AI和chatgpt 人類和機器共生的未來。 (初版)。 台灣: 深智數位。 15.格爾達德, 張靜雯, & Geldard, M. (2020)。 人工智慧開發實務 : 使用swift / Mars Geldard等原著 ; 張靜雯譯。 Gotop ; A613 (初版)。 臺北市: 碁峰資訊股份有限公司。 16.耿筠&謝立詩. (2006)。 影響研究機構跨功能團隊績效之組織因素之研究。 中山管理評論, 14(2), 339-366。 17.高昶易. (2021)。 AI人工智慧。 (初版)。 新北市: 普林斯頓國際有限公司。 18.高琬柔. (2020)。 專案管理應用於研發人工智慧新產品之關鍵要素分析-以A科技公司為例。 專案管理碩士在職學位學程。 台中市: 逢甲大學。 未出版碩士論文。 19.許有進. (2018)。 臺灣發展人工智慧之挑戰與機會。 國土及公共治理季刊, 6(4), 28-39。 20.陳亮廷. (2020)。 人工智慧技術應用對新產品開發績效之影響-以產品特性為干擾變數。 企業管理研究所: 私立淡江大學。 未出版碩士論文。 21.黃士嘉, & 林邑撰. (2021)。 輕鬆學會google Tensorflow 2.0 : 人工智慧深度學習實作開發 / 黃士嘉, 林邑撰著。 人工智慧深度學習實作開發 (第三版)。 新北市: 博碩文化。 22.黃敏萍. (2000)。 跨功能任務團隊之結構與效能--任務特性與社會系絡之影響。 商學研究所 。 台北市: 國立臺灣大學。 未出版博士論文。 23.蔡宜坦. (2023)。 Chatgpt 4 萬用手冊:超強外掛、Prompt 範本、Line Bot、Openai Api、Midjourney、Stable Diffusion。 (初版)。 台灣: 旗標。 24.蔣榮先. (2020)。 從AI到智慧醫療 / 蔣榮先著。 生活視野 ; 29. (初版 )。 臺北市: 商周出版。 25.賴森堂. (2013)。 品質為基礎的持續改善程序以降低軟體專案風險 東吳大學企業管理學系。 未出版碩士論文。 26.魏聰哲. (2019)。 日本照護機器人研發網絡發展動向與普及政策。 經濟前瞻(185), 123-128。 27.羅達生. (2020)。 人工智慧與產業創新。 (初版)。 臺北市: 財團法人孫運璿學術基金會。 28.Danile James Gullo. (2017)。 Agile成功法則: 敏捷實作者的解決方案。 莊弘祥編譯, (初版)。 臺北市: 碁峰資訊。 29.Russell, S. J., & Norvig, P. (2018)。 人工智慧 : 現代方法 / Stuart Russell,Peter Norvig原著 ; 歐崇明,時文中,陳龍編譯。 In 歐崇明, 時文中, & 陳龍編譯, (初版)。 新北市: 全華圖書。 30.Zai, & Brown. (2021)。 深度強化式學習。 黃駿編譯, (初版)。 臺北市: 旗標。 三、網路資料及其他 1.林佳楠. (2023)。 台灣AI發展「強硬」卻「軟弱」 如何挾硬體優勢,突破軟體資源匱乏?。 https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?id=0000654184_PIZ0Y4TU9C8PK83Q309KV 2.品玩. (2018)。 亞馬遜 AI 在履歷篩選中歧視女性?Ai 犯錯不是第一次了。 TechNews科技新報。 https://technews.tw/2018/10/17/ai-discrimination-mistakes/ 3.科技產業資訊室. (2019)。 AI專案50%以上失敗收場,仍是企業優先布局工作。 https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=15797 4.國務院. (2017)。 新一代人工智能發展規劃。 http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm 5.陳昇瑋. (2020)。 台灣產業AI化的問題6〉打造第一支人工智慧團隊?這麼開始!。 https://aiacademy.tw/start-like-this/ 6.楊晨欣. (2017)。 Alphago宣布從圍棋戰場中退役!。 https://www.bnext.com.tw/article/44694/alphago-retires-after-the-victory 7.AppWorksAccelerator. (2019)。 台灣擁有發展 AI 強大能量與優勢!Appworks 告訴你 AI 新創可以把握的 3 大機會。 https://buzzorange.com/techorange/2019/07/19/taiwan-ai-opportunity/ 8.ASGARD. (2017). Artificial Intelligence Made in Europe. Retrieved 2022 from https://asgard.vc/the-european-artificial-intelligence-landscape-more-than-400-ai-companies-made-in-europe/ 9.Ivanov, M. (2022). The Evolution of the Yolo Neural Networks Family from V1 to V7. https://medium.com/deelvin-machine-learning/the-evolution-of-the-yolo-neural-networks-family-from-v1-to-v7-4d4fab3c4db7 |
Description: | 碩士 國立政治大學 科技管理與智慧財產研究所 106364127 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0106364127 |
Data Type: | thesis |
Appears in Collections: | [科技管理與智慧財產研究所] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
412701.pdf | | 11181Kb | Adobe PDF2 | 128 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|