Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/146860
|
Title: | 應用遷移式自然語言結合 ESG 報章媒體情緒建構企業違約預警模型 Applying Transfer Learning of National Language Processing Combined with ESG News Sentiment to Construct Corporate Default Warning Mode |
Authors: | 蘇于翔 SU, YU-SIANG |
Contributors: | 江彌修 Chiang, Mi-Hsiu 蘇于翔 SU,YU-SIANG |
Keywords: | 企業違約預警 深度學習 文字探勘 責任投資 Corporate Default Prediction Deep Learning Text Mining responsible investment |
Date: | 2023 |
Issue Date: | 2023-09-01 14:47:33 (UTC+8) |
Abstract: | 企業信用風險相關研究一直都是學術界關注的議題,過去已經有不少研究指出信用風險與傳統財務數據相關,例如:帳市比、公司槓桿、股價波動度等等。而近年來各界永續議題的關注度不斷提升,愈來愈多投資者認為環境、社會和公司治理(Environmental, Social, and Governance,簡稱 ESG)議題的表現會影響到企業整體營運狀況,應將企業的 ESG 表現納入投資決策中。然而在信用風險的研究方面,過去的研究主要專注在傳統財務數據等結構化資料上,且較少關注 ESG 因素對信用風險的影響,本研究嘗試結合結構化資料以及非結構化資料,建立機器學習的模型,對信用風險進行預測。結構化資料方面,本研究除了傳統財務數據外,額外加入碳排放量等與 ESG 相關的指標數據;非結構化資料方面,將利用BERT(Bidirectional Encoder Representations from Transformers)模型以及 FinBERT (BERT for Financial Text Mining) 模型,對新聞媒體進行語意分析,從媒體文本中萃取出財務情緒以及 ESG 情緒,最終建立隨機森林模型。本次研究發現,ESG 因子對於信用風險能夠提供有用的資訊,ESG 整體表現愈好的企業,有助於降低信用風險。 Corporate credit risk has been a prominent topic in academia, with previous studies emphasizing the correlation between credit risk and traditional financial data. However, the growing focus on sustainability, particularly Environmental, Social, and Governance (ESG) factors, has led to the need for their inclusion in credit risk research. This study aims to combine structured and unstructured data, incorporating ESG indicators alongside traditional financial metrics. By leveraging machine learning techniques and sentiment analysis on news media using BERT and FinBERT models, a random forest model is developed. The findings reveal that ESG factors provide valuable information, as companies with better ESG performance tend to exhibit reduced credit risk. |
Reference: | Albuquerque, R., Koskinen, Y., & Zhang, C. (2019). Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science, 65(10), 4451-4469. Chava, S. (2014). Environmental externalities and cost of capital. Management science, 60(9),2223-2247.
Alsentzer, E., Murphy, J. R., Boag, W., Weng, W., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323.
Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models.
arXiv preprint arXiv:1908.10063.
B.F. Shi, X. Zhao, B. Wu, Y.Z. Dong. Credit rating and microfinance lending decisions based on loss given default (LGD). Financ. Res. Lett., 30 (2019), pp. 124-129
Bauer, R., & Hann, D. (2010). Corporate environmental management and credit risk.
Available at SSRN 1660470.
Beltagy, I., Cohan, A., & Lo, K. (2019). SciBERT: Pretrained contextualized embeddings for scientific text. arXiv preprint arXiv:1903.10676.
Collin-Dufresn, P, Goldstein, R. S., and Martin, J. S. (2001). The determinants of credit spread changes. The Journal of Finance, 56(6):2177-2207.
Cutler, B. L., Penrod, S. D., & Dexter, H. R. (1989). The eyewitness, the expert psychologist, and the jury. Law and Human Behavior, 13(3), 311-332.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
El Ghoul,S.,Guedhami,O.,Kwok,C.C.,& Mishra,D. R. (2011). Does cor-
porate social responsibility affect the cost of capital?. Journal of Banking & Finance, 35(9), 2388-2406.
Ericsson, J., Jacobs, K., & Oviedo, R. (2009). The determinants of credit default swap premia. Journal of financial and quantitative analysis, 44(1), 109-132.
Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210-233.
H. Ogut, M.M. Doganay, N.B. Ceylan, R. Aktas. Prediction of bank financial strength ratings: the case of Turkey. Econ. Modell., 29 (3) (2012), pp. 632-640
Huang, A. H., Wang, H., & Yang, Y. (2022). FinBERT: A Large Language Model for Extracting Information from Financial Text. Contemporary Accounting Research.
Li, Z., Crook, J., Andreeva, G., & Tang, Y. (2021). Predicting the risk of financial distress using corporate governance measures. Pacific-Basin Finance Journal, 68, 101334.
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2019). BioBERT:
A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240.
Lins, K. V., Servaes, H., & Tamayo, A. (2017. Social capital, trust, and firm performance:
The value of corporate social responsibility during the financial crisis. The Journal of Finance, 72(4), 1785-1824.
Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The Journal of finance, 66(1), 35-65.
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
Luo,X.,& Bhattacharya,C.B. (2006). Corporate social responsibility, customer satisfaction, and market value. Journal of marketing, 70(4), 1-18.
Luo,X.,& Bhattacharya,C.B. (2009). The debate over doing good: Corporate social performance, strategic marketing levers, and firm-idiosyncratic risk. Journal of marketing, 73(6), 198-213.
Michalis Doumpos & José Rui Figueira (2019). A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method. Omega, 82 (2019), Pages 166-180.
N. Benbouzid, S.K. Mallick, R.M. Sousa. An international forensic perspective of the determinants of bank CDS spreads. J. Financ. Stab., 33 (2017), pp. 60-70
Norden, L. (2017). Information in cds spreads. Journal of Banking & Finance, 75:118135.
Norden, L. and Weber, M. (2004). Informational efficiency of credit default swap and stock markets: The impact of credit rating announcements. Journal of Banking & Finance, 28(11):2813-2843.
Pedrosa, M. (1998). Systematic risk in corporate bond credit spreads. Journal of Fixed Income, 8(3):7–26.
Picasso, A., Merello, S., Ma, Y., Oneto, L., & Cambria, E. (2019). Technical analysis and sentiment embeddings for market trend prediction. Expert Systems with Applications, 135, 60-70.
Switzer, L. N., Tu, Q, & Wang, J. (2018). Corporate governance and default risk in financial firms over the post-financial crisis period: International evidence. Journal of International Financial Markets, Institutions and Money, 52, 196-210.
Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamentals. The journal of finance, 63(3), 14371467. |
Description: | 碩士 國立政治大學 金融學系 110352013 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110352013 |
Data Type: | thesis |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
201301.pdf | | 1808Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|