English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50942297      Online Users : 972
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/146860
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146860


    Title: 應用遷移式自然語言結合 ESG 報章媒體情緒建構企業違約預警模型
    Applying Transfer Learning of National Language Processing Combined with ESG News Sentiment to Construct Corporate Default Warning Mode
    Authors: 蘇于翔
    SU, YU-SIANG
    Contributors: 江彌修
    Chiang, Mi-Hsiu
    蘇于翔
    SU,YU-SIANG
    Keywords: 企業違約預警
    深度學習
    文字探勘
    責任投資
    Corporate Default Prediction
    Deep Learning
    Text Mining
    responsible investment
    Date: 2023
    Issue Date: 2023-09-01 14:47:33 (UTC+8)
    Abstract: 企業信用風險相關研究一直都是學術界關注的議題,過去已經有不少研究指出信用風險與傳統財務數據相關,例如:帳市比、公司槓桿、股價波動度等等。而近年來各界永續議題的關注度不斷提升,愈來愈多投資者認為環境、社會和公司治理(Environmental, Social, and Governance,簡稱 ESG)議題的表現會影響到企業整體營運狀況,應將企業的 ESG 表現納入投資決策中。然而在信用風險的研究方面,過去的研究主要專注在傳統財務數據等結構化資料上,且較少關注 ESG 因素對信用風險的影響,本研究嘗試結合結構化資料以及非結構化資料,建立機器學習的模型,對信用風險進行預測。結構化資料方面,本研究除了傳統財務數據外,額外加入碳排放量等與 ESG 相關的指標數據;非結構化資料方面,將利用BERT(Bidirectional Encoder Representations from Transformers)模型以及 FinBERT (BERT for Financial Text Mining) 模型,對新聞媒體進行語意分析,從媒體文本中萃取出財務情緒以及 ESG 情緒,最終建立隨機森林模型。本次研究發現,ESG 因子對於信用風險能夠提供有用的資訊,ESG 整體表現愈好的企業,有助於降低信用風險。
    Corporate credit risk has been a prominent topic in academia, with previous studies emphasizing the correlation between credit risk and traditional financial data. However, the growing focus on sustainability, particularly Environmental, Social, and Governance (ESG) factors, has led to the need for their inclusion in credit risk research. This study aims to combine structured and unstructured data, incorporating ESG indicators alongside traditional financial metrics. By leveraging machine learning techniques and sentiment analysis on news media using BERT and FinBERT models, a random forest model is developed. The findings reveal that ESG factors provide valuable information, as companies with better ESG performance tend to exhibit reduced credit risk.
    Reference: Albuquerque, R., Koskinen, Y., & Zhang, C. (2019). Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science, 65(10), 4451-4469. Chava, S. (2014). Environmental externalities and cost of capital. Management science, 60(9),2223-2247.

    Alsentzer, E., Murphy, J. R., Boag, W., Weng, W., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323.

    Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models.

    arXiv preprint arXiv:1908.10063.

    B.F. Shi, X. Zhao, B. Wu, Y.Z. Dong. Credit rating and microfinance lending decisions based on loss given default (LGD). Financ. Res. Lett., 30 (2019), pp. 124-129

    Bauer, R., & Hann, D. (2010). Corporate environmental management and credit risk.

    Available at SSRN 1660470.

    Beltagy, I., Cohan, A., & Lo, K. (2019). SciBERT: Pretrained contextualized embeddings for scientific text. arXiv preprint arXiv:1903.10676.

    Collin-Dufresn, P, Goldstein, R. S., and Martin, J. S. (2001). The determinants of credit spread changes. The Journal of Finance, 56(6):2177-2207.

    Cutler, B. L., Penrod, S. D., & Dexter, H. R. (1989). The eyewitness, the expert psychologist, and the jury. Law and Human Behavior, 13(3), 311-332.

    Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

    El Ghoul,S.,Guedhami,O.,Kwok,C.C.,& Mishra,D. R. (2011). Does cor-

    porate social responsibility affect the cost of capital?. Journal of Banking & Finance, 35(9), 2388-2406.

    Ericsson, J., Jacobs, K., & Oviedo, R. (2009). The determinants of credit default swap premia. Journal of financial and quantitative analysis, 44(1), 109-132.

    Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210-233.

    H. Ogut, M.M. Doganay, N.B. Ceylan, R. Aktas. Prediction of bank financial strength ratings: the case of Turkey. Econ. Modell., 29 (3) (2012), pp. 632-640

    Huang, A. H., Wang, H., & Yang, Y. (2022). FinBERT: A Large Language Model for Extracting Information from Financial Text. Contemporary Accounting Research.

    Li, Z., Crook, J., Andreeva, G., & Tang, Y. (2021). Predicting the risk of financial distress using corporate governance measures. Pacific-Basin Finance Journal, 68, 101334.

    Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2019). BioBERT:

    A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240.

    Lins, K. V., Servaes, H., & Tamayo, A. (2017. Social capital, trust, and firm performance:

    The value of corporate social responsibility during the financial crisis. The Journal of Finance, 72(4), 1785-1824.

    Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The Journal of finance, 66(1), 35-65.

    Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.

    Luo,X.,& Bhattacharya,C.B. (2006). Corporate social responsibility, customer satisfaction, and market value. Journal of marketing, 70(4), 1-18.

    Luo,X.,& Bhattacharya,C.B. (2009). The debate over doing good: Corporate social performance, strategic marketing levers, and firm-idiosyncratic risk. Journal of marketing, 73(6), 198-213.

    Michalis Doumpos & José Rui Figueira (2019). A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method. Omega, 82 (2019), Pages 166-180.

    N. Benbouzid, S.K. Mallick, R.M. Sousa. An international forensic perspective of the determinants of bank CDS spreads. J. Financ. Stab., 33 (2017), pp. 60-70

    Norden, L. (2017). Information in cds spreads. Journal of Banking & Finance, 75:118135.

    Norden, L. and Weber, M. (2004). Informational efficiency of credit default swap and stock markets: The impact of credit rating announcements. Journal of Banking & Finance, 28(11):2813-2843.

    Pedrosa, M. (1998). Systematic risk in corporate bond credit spreads. Journal of Fixed Income, 8(3):7–26.

    Picasso, A., Merello, S., Ma, Y., Oneto, L., & Cambria, E. (2019). Technical analysis and sentiment embeddings for market trend prediction. Expert Systems with Applications, 135, 60-70.

    Switzer, L. N., Tu, Q, & Wang, J. (2018). Corporate governance and default risk in financial firms over the post-financial crisis period: International evidence. Journal of International Financial Markets, Institutions and Money, 52, 196-210.

    Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamentals. The journal of finance, 63(3), 14371467.
    Description: 碩士
    國立政治大學
    金融學系
    110352013
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110352013
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    201301.pdf1808KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback