Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/146859
|
Title: | 基於產業類別之S&P500與美國十年期公債DCC動態條件相關性分析 The analysis of Dynamic Conditional Correlations between S&P500 and US 10 Year Treasury based on different industries |
Authors: | 何建志 He, Chien-Chih |
Contributors: | 張興華 Chang, Hsing-Hua 何建志 He,Chien-Chih |
Keywords: | 股債動態條件相關性 產業別 資料頻率 DCC MV-GARCH Model |
Date: | 2023 |
Issue Date: | 2023-09-01 14:47:20 (UTC+8) |
Abstract: | 股票與債券為市場上最為普遍的金融資產,深入了解股債相關性可以增進資產配置效益、提升股債再平衡效率,活化避險策略。而美國又是全球發展最蓬勃的金融市場,因此本研究以美國十年期公債與S & P 500及S & P 500不同產業為標的,評估其股債動態條件相關係數。 本研究利用DCC MV-GARCH模型計算出之股債動態條件相關係數,而第一個研究目標,即為了解股債動態條件相關係數在日資料與月資料中,隨時間的走勢變化。實證顯示,股債動態條件相關係數在2022年聯準會快速升息下,有明顯的上升趨勢,且日資料較月資料存在更明顯的波動持續性與叢聚性。 第二與第三個研究目標,分別為利用OLS迴歸分析評估VIX、MOVE、美元指數、黃金現貨價格、產業股價指數交易量對股債動態條件相關係數於不同產業與不同資料頻率之影響。實證結果顯示,面對VIX指數改變,股債動態條件相關係數在不同資料頻率下會有相反之變化,可能原因包含投資人情緒、再平衡、資金調配、風險控制、安全性資產與風險性資產間的轉移等行為。而面對MOVE指數、美元指數變動,股債動態條件相關係數同樣在不同資料頻率下容易有相反之變化,可能原因包含安全性資產與風險性資產間的轉移、總體經濟、貨幣政策等因素。產業之特性、資料頻率的差異都會造成股債動態條件相關係數在變化幅度上的異同。股價指數交易量變動,則容易在短期內造成股債動態條件相關係數正向變化。 Stocks and bonds are the most common financial assets in the market. Understanding the correlation between them can enhance asset allocation efficiency, improve stock-bond rebalancing, and activate hedging strategies. This study focuses on the dynamic conditional correlation between U.S. ten-year Treasury bonds, the S&P 500 index, and its various sectors.
Using the DCC MV-GARCH model, we calculate the dynamic conditional correlation. The first goal is to track how this correlation changes over time in daily and monthly data. Empirical evidence shows that amid the 2022 Federal Reserve interest rate hikes, the correlation exhibited a notable upward trend. Daily data also displayed more pronounced volatility and clustering compared to monthly data.
The second and third objectives involve analyzing the impact of VIX, MOVE, the U.S. dollar index, gold prices, and industry stock index trading volumes on the dynamic conditional correlation in different industries and data frequencies. Results indicate that changes in the VIX index lead to opposite effects at different data frequencies, possibly due to investor sentiment, rebalancing, capital allocation, risk control, and asset transfers between safety and risk categories. Similar effects are observed with changes in the MOVE index and the U.S. dollar index. Differences in industry characteristics and data frequency contribute to variations in the dynamic conditional correlation. Changes in stock index trading volumes can induce short-term positive dynamic conditional correlations. |
Reference: | 1. 李昀 (2021)。聯準會量化寬鬆政策對美國股債動態條件相關性之影響。國立政治大學財務管理研究所。 2. 張維敉(2002)。金融危機與風險外溢─DCC模型之應用。國立中央大學財務金融研究所。 3. 陳旭昇(2013)。時間序列分析--總體經濟與財務金融之應用。台灣:東華。 4. Baker, M. P., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. The Journal of Finance, 61(4), 1645–1680. 5. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31 (3) (1986), pp. 307-327 6. Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics 69:542–47. 7. Bollerslev, T., R. Engle, and J.M. Wooldridge. (1988). A Capital Asset Pricing Model with Time Varying Covariance. Journal of Political Economy, 96, 116-131. 8. Cao, N., Galvani, V., & Gubellini, S. (2017). Firm-specific stock and bond predictability: New evidence from Canada. International Review of Economics & Finance, 51, 174–192. 9. Christie, A. A. (1982), The stochastic behavior of common stock variances: Value Leverage and interest rate effects. Journal of Financial Economics, 10, 407-432. 10. Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1007. 11. Engle, R. F. (2002) Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics, 20, 339-350. 12. Gokmenoglu, K. K., and Hadood, A. A. A. (2020). Impact of US unconventional monetary policy on dynamic stock-bond correlations: portfolio rebalancing and signalling channel effects. Finance Research Letters, forthcoming. 13. Gomes, P., & Taamouti, A. (2016). In search of the determinants of European asset market comovements. International Review of Economics & Finance, 44, 103–117. 14. Hassani, H., & Yeganegi, M. R. (2020). Selecting optimal lag order in Ljung-Box test. Physica A: Statistical Mechanics and its Applications, 541, Article 123700. 15. L. Fang, H. Yu, Y. Huang. (2018) The role of investor sentiment in the long-term correlation between U.S. stock and bond markets. International Review of Economics and Finance, 58, pp. 127-139 16. Kalotychou, E., Staikouras, S. K., & Zhao, G. (2014). The role of correlation dynamics in sector allocation. Journal of Banking and Finance, 48, 1–12. 17. M.H. Kim, L. Sun. (2017). Dynamic conditional correlations between Chinese sector returns and the S&P 500 index: An interpretation based on investment shocks. International Review of Economics & Finance, 48, pp. 309-325. 18. Kozak, S. (2022). Dynamics of stock and bond returns. Journal of Monetary Economics, 126, 188– 209. 19. Ljung, G. , Box, G. (1978). On a measure of lack of fit in time series models. Biometrika 65, 297-303. 20. Lin, Kaitao. , Gurrola-Perez, Pedro. , Speth, Bill. (2022). Circuit Breakers and Market Quality. WFE Research Working Paper no. 3 21. Markowitz, Harry M. (1952). Portfolio Selection. Journal of Finance, pp. 77-91. 22. Nelson, C.R. , Plosser, C.I. (1982) Trends and random walks in macroeconomic time series: some evidence and implications. J. Monetary Econ., 10 (2), pp. 139-l62 23. Nelson, D.B. (1989), Modeling stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 93-98. 24. Nelson D.B. (1990). ARCH models as diffusion approximations. Journal of Econometrics, 45 (1), pp. 7-38. 25. Papanikolaou, D. (2011). Investment shocks and asset prices. Journal of Political Economy, 119, 639–685. 26. Phylaktis, K., & Xia, L. (2009). Equity market comovement and contagion: A sectoral perspective. Financial Management, 38(2), 381–409. 27. R.S.Tsay. (2010) Analysis of Financial Time Series, John Wiley & Sons, New York. 28. Rattray, S. , N. Granger, C. R. Harvey, and O. Van Hemert (2020). Strategic rebalancing. Journal of Portfolio Management, forthcoming. 29. R.H.Shumway,D.S.Stoffer (2011). Time Series Analysis and Its Applications with R Examples,Springer. NewYork. 30. R.J.Hyndman,G.Athanasopoulos (2018). Forecasting : Principles and Practice. Otext. 31. Tobin, J. (1958). Liquidity Preference as Behavior Towards Risk. Review of Economic Studies, 25, 65-86. [960] |
Description: | 碩士 國立政治大學 金融學系 110352005 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110352005 |
Data Type: | thesis |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
200501.pdf | | 2756Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|