English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114503/145531 (79%)
Visitors : 53432156      Online Users : 1144
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/146600
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146600


    Title: 再生能源憑證市場定價分析:以台灣市場為例
    Pricing Renewable Energy Certificate: Evidence from Taiwan Market ( T-REC )
    Authors: 黃品誠
    Huang, Pin-Cheng
    Contributors: 林士貴
    羅秉政

    Lin, Shih-Kuei
    Kendro Vincent

    黃品誠
    Huang, Pin-Cheng
    Keywords: 再生能源憑證
    綠色憑證
    太陽能發電
    市場結清
    Renewable energy certificates
    Green certificates
    Solar generation
    Market clearing
    Date: 2023
    Issue Date: 2023-08-02 14:11:20 (UTC+8)
    Abstract: 我國經由《再生能源發展條例》的修訂,正式推出「用電大戶條款」發展再生能源憑證市場,然而特殊的市場設計使得用電大戶成為潛在的再生能源憑證供給方,而能源憑證的供給又和系統發電量密不可分。因此本文的貢獻在於發展包含日照時數及模組溫度兩實質因子的發電量模型,透過季節性均數、變異數之均數復歸過程 (mean-reverting process with seasonal mean and variance,MR-SM-SV) 使模型能夠捕捉到季節性的變化,並透過與歷史發電量比較,確認模型能夠捕捉歷史趨勢且長期下優於過往文獻使用之發電量模型。進而推導出用電大戶在效用極大化條件下,配置於購買灰電、再生能源及設置再生能源系統的最適比例,並在納入灰電及再生能源生產商利潤最大化條件下,考量市場結清條件推導出再生能源憑證及能源價格間的關係式,以期能夠增加市場資訊透明度,促進市場交易活絡及合理評估發電系統價值,進而推動永續能源市場發展並接軌國際。
    Under the revision of our country`s energy regulations, the " Energy-heavy Industries terms" has been officially introduced to develop the renewable energy certificate market. However, the special market design makes energy-heavy industries become potential suppliers of renewable energy certificates, and the supply of energy certificates is inextricably linked with system power generation. Therefore, the contribution of this paper is to develop a generation model that includes two real factors: sunshine hours and module temperature, and through the mean-reverting process with seasonal mean and variance (MR-SM-SV), the model will be able to capture seasonal variation and compare with historical generation to confirm that it is realistic and better than the generation models used in the past literature.
    Furthermore, this study derives the optimal proportion for energy-heavy industries to allocate towards purchasing conventional electricity, renewable energy, and setting up renewable energy systems under the condition of utility maximization. Additionally, considering the maximization of profits for conventional and renewable energy producers, along with market clearing conditions, the relationship between renewable energy certificates and energy prices is derived. This aims to increase market transparency, promote active market trading, and facilitate a fair assessment of the value of power generation systems. Ultimately, these efforts aim to drive the development of the sustainable energy market and align it with international standards.
    Reference: 1. 陳膺仁(2022)。台灣再生能源憑證交易政策之探討〔未出版之碩士論文〕。國立成功大學財務金融研究所。
    2. 劉偉宏(2020)。臺灣再生能源憑證於自願性市場之流動性分析〔未出版之碩士論文〕。國立政治大學行政管理碩士學程。
    3. 張安興(2022)。永續能源資產定價分析:以太陽能電廠為例〔未出版之博士論文〕。國立政治大學金融學系。
    4. Agliardi, E., & Agliardi, R. (2019). Financing environmentally-sustainable projects with green bonds. Environment and Development Economics, 24(6), 608-623.
    5. Agliardi, E., Agliardi, R. (2021). Corporate Green Bonds: Understanding the Greenium in a Two-Factor Structural Model. Environmental and Resource Economics, 80, 257-278.
    6. An, J., Kim, D.-K., Lee, J., & Joo, S.-K. (2021). Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea. Sustainability, 13(19), 10613.
    7. Arias-Gaviria, J., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy, 139, 1111-1119.
    8. Baamonde-Seoane, M. A., Calvo-Garrido, M.-C., & Vázquez, C. (2023). Pricing renewable energy certificates with a Crank–Nicolson Lagrange–Galerkin numerical method. Journal of Computational and Applied Mathematics, 422, 114891.
    9. Benth, F. E., & Šaltytė‐Benth, J. (2005). Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives. Applied Mathematical Finance, 12(1), 53-85.
    10. Benth, F. E., & Šaltytė‐Benth, J. (2007). The volatility of temperature and pricing of weather derivatives. Quantitative Finance, 7(5), 553-561.
    11. Branker, K., Pathak, M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470–4482.
    12. Burns, J. E., & Kang, J.-S. (2012). Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential. Energy Policy, 44, 217-225.
    13. Chang, Ming-Chung. (2019). The Effects of the Feed-In-Tariff System and the Renewable Energy Development Fund on Taiwan’s Power Market. Journal of Taiwan Energy, 6(4), 353-367.
    14. Coulon, M., Khazaei, J., & Powell, W. B. (2015). SMART-SREC: A stochastic model of the New Jersey solar renewable energy certificate market. Journal of Environmental Economics and Management, 73, 13-31.
    15. Dong, Y., & Shimada, K. (2017). Evolution from the renewable portfolio standards to feed-in tariff for the deployment of renewable energy in Japan. Renewable Energy, 107, 590-596.
    16. Hulshof, D., Jepma, C., & Mulder, M. (2019). Performance of markets for European renewable energy certificates. Energy Policy, 128, 697-710.
    17. Hustveit, M., Frogner, J. S., & Fleten, S.-E. (2017). Tradable green certificates for renewable support: The role of expectations and uncertainty. Energy, 141, 1717-1727.
    18. Jensen, S. G., & Skytte, K. (2002). Interactions between the power and green certificate markets. Energy Policy, 30(5), 425-435.
    19. Khazaei, J., Coulon, M., & Powell, W. B. (2017). ADAPT: A Price-Stabilizing Compliance Policy for Renewable Energy Certificates: The Case of SREC Markets. Operations Research, 65(6), 1429-1445.
    20. Li, Y., Su, Y., & Shu, L. (2014). An ARMAX Model for Forecasting the Power Output of a Grid Connected Photovoltaic System. Renewable Energy, 66, 78-89.
    21. Baamonde-Seoane, M. A., Calvo-Garrido, M. del C., Coulon, M., & Vázquez, C. (2021). Numerical solution of a nonlinear PDE model for pricing Renewable Energy Certificates (RECs). Applied Mathematics and Computation, 404, 126199.
    22. Marchenko, O. V. (2008). Modeling of a green certificate market. Renewable Energy, 33(8), 1953-1958.
    23. Mubiru, J. (2008). Predicting total solar irradiation values using artificial neural networks. Renewable Energy, 33(10), 2329-2332.
    24. Nicolini, M., & Tavoni, M. (2017). Are renewable energy subsidies effective? Evidence from Europe. Renewable and Sustainable Energy Reviews, 74, 412-423.
    25. Pillot, B., de Siqueira, S., & Dias, J. B. (2018). Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case. Renewable Energy, 127, 974-988.
    26. Reikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83(3), 342-349.
    27. Schaffer, L. M., & Bernauer, T. (2014). Explaining government choices for promoting renewable energy. Energy Policy, 68, 15-27.
    28. Shrivats, A., & Jaimungal, S. (2020). Optimal Generation and Trading in Solar Renewable Energy Certificate (SREC) Markets. Applied Mathematical Finance, 27(1-2), 99-131.
    29. Shrivats, A. V., Firoozi, D., Jaimungal, S. (2021). Principal agent mean field games in REC markets. arXiv, 2112.11963.
    30. Shrivats, A. V., Firoozi, D., Jaimungal, S. (2022). A mean-field game approach to equilibrium pricing in solar renewable energy certificate markets. Mathematical Finance, 32(3), 779-824.
    31. Wittenberg, I., & Matthies, E. (2016). Solar policy and practice in Germany: How do residential households with solar panels use electricity? Energy Research & Social Science, 21, 199-211.
    32. Ying, Z., Xin-gang, Z., Xue-feng, J., & Zhen, W. (2021). Can the Renewable Portfolio Standards improve social welfare in China`s electricity market? Energy Policy, 152, 112242.
    33. Zhang, H., Assereto, M., & Byrne, J. (2023). Deferring real options with solar renewable energy certificates. Global Finance Journal, 55, 100795.
    Description: 碩士
    國立政治大學
    金融學系
    110352027
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110352027
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202701.pdf3819KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback