政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146578
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113354/144335 (79%)
造访人次 : 51191873      在线人数 : 909
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/146578


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/146578


    题名: 隱藏狀態模型、貝氏估計與企業營運
    Hidden States Models, Bayesian Estimation and Business Operations
    作者: 黃紀維
    Huang, Chi-Wei
    贡献者: 周彥君
    莊皓鈞

    Chou, Yen-Chun
    Chuang, Hao-Chun

    黃紀維
    Huang, Chi-Wei
    关键词: 離散時間序列
    分布預測
    隱藏馬可夫鏈模型
    循環神經網路
    貝氏估計
    馬可夫鏈蒙地卡羅
    Discrete Time Series
    Distributional Forecast
    Hidden Markov Model
    Recurrent Neural Network
    Bayesian Estimation
    Markov chain Monte Carlo
    日期: 2023
    上传时间: 2023-08-02 14:06:09 (UTC+8)
    摘要: 企業營運的情境中經常儲存大量的離散時間序列,利用用戶過去需求資料預測未來可能的情況對於企業營運中的規劃與決策舉足輕重。隱藏馬可夫鏈模型 (Hidden Markov Models, HMM) 是機器學習模型中具有能探討隱藏特徵與挖掘隱藏狀態與觀察值之間關係的模型,捕捉不可觀察的內在特徵預測未來長期與短期的模式。有別於HMM簡潔明晰的參數模型,新興的機器學習模型循環神經網路 (Recurrent Neural Networks, RNN) 較為複雜且更具彈性,DeepAR 同樣善於預測序列資料。本研究與先前研究不同,我們運用零售M5競賽資料集對HMM與RNN進行較完備的比較,M5資料集中存在過度分散與0的出現次數過高的問題,我們提出Poisson HMM、Generalized Poisson HMM和NB DeepAR進行需求分布預測。由於HMM模型參數估計不易,因此我們使用馬可夫鏈蒙地卡羅 (Markov Chain Monte Carlo, MCMC) 估計HMM參數。我們發現HMM預測M5資料集的分位數損失勝過DeepAR,Generalized Poisson HMM在預測較高的分位數損失有更好的表現,HMM相較DeepAR能更精準的預測前一期自我回歸係數較高的單品,DeepAR則是對於0的比例較高的單品序列中表現出色,至於GP1 HMM與Poisson HMM僅在Q值較大的分位數損失有明顯差異,這對於如罕見疾病藥物的需求預測具有重要意義。我們所設計的HMM面對數十萬筆的資料能兼顧運算成本與相當的精準度,同時解釋力佳的HMM能夠有效支援管理者於商業營運上的決策。
    In the context of enterprise operations, storing large volumes of discrete time series and utilizing past customer demand to predict future scenarios is crucial for planning and decision-making. Hidden Markov Models (HMMs) are machine learning models that explore hidden features and uncover relationships between hidden states and observed values, capturing unobservable underlying patterns for long-term and short-term predictions. Unlike the concise and straightforward parameter model of HMMs, the emerging machine learning model Recurrent Neural Networks (RNNs) is more complex and flexible. DeepAR, in particular, excels in predicting sequential data. In this study, different from previous research, we conducted a comprehensive comparison between HMMs and RNNs using the retail M5 competition dataset. The M5 dataset presents challenges such as overdispersion and zero-inflation. To address these issues, we proposed Poisson HMM, Generalized Poisson HMM, and NB DeepAR for demand distributional forecast. Due to the challenging parameter estimation of HMMs, we employed Markov Chain Monte Carlo (MCMC) for HMM parameter estimation. We found that HMMs outperformed DeepAR in predicting quantile losses for the M5 dataset. The Generalized Poisson HMM demonstrated better performance in predicting higher quantile losses. DeepAR excels in handling single-item sequences with a high proportion of zeros. On the other hand, GP1 HMM and Poisson HMM exhibit significant differences only in terms of quantile losses at larger Q values. This finding holds particular significance for demand prediction in scenarios such as medications for rare diseases. The HMM we designed strikes a balance between computational costs and accuracy when handling hundreds of thousands of data. Additionally, the interpretability of HMMs effectively supports managers in making decisions for business operations.
    參考文獻: Alwan, L. C., & Weiß, C. H. (2017). INAR implementation of newsvendor model for serially dependent demand counts. International Journal of Production Research, 55(4), 1085-1099.
    Ascarza E, Netzer O, Hardie BGS (2018) Some customers would rather leave without saying goodbye. Marketing Science 37(1), 54-77.
    Chapados, N. (2014). Effective Bayesian modeling of groups of related count time series. International conference on machine learning (pp. 1395-1403).
    Chen, J., & Rao, V. R. (2022). Evaluating strategies for promoting retail mobile channel using a hidden Markov model. Journal of Retailing.
    Chib, S., & Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The american statistician, 49(4), 327-335.
    Consul, P. C., & Jain, G. C. (1973). A generalization of the Poisson distribution. Technometrics, 15(4), 791-799.
    Goldberg, Y., Adler, M., & Elhadad, M. (2008, June). EM can find pretty good HMM POS-taggers (when given a good start). In Proceedings of ACL-08: HLT (pp. 746-754).
    Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
    Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580). New York: Springer.
    Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting, 32(3), 788-803.
    Montoya, R., & Gonzalez, C. (2019). A hidden Markov model to detect on-shelf out-of-stocks using point-of-sale data. Manufacturing & Service Operations Management, 21(4), 932-948.
    Montoya, R., Netzer, O., & Jedidi, K. (2010). Dynamic allocation of pharmaceutical detailing and sampling for long-term profitability. Marketing Science, 29(5), 909-924.
    Naumzik, C., Feuerriegel, S., & Weinmann, M. (2022). I will survive: Predicting business failures from customer ratings. Marketing Science, 41(1), 188-207.
    Netzer O, Lattin JM, Srinivasan V (2008) A hidden Markov model of customer relationship dynamics. Marketing Science 27(2), 185-204.
    Sahoo, N., Singh, P. V., & Mukhopadhyay, T. (2012). A hidden Markov model for collaborative filtering. MIS quarterly, 1329-1356.
    Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3), 1181-1191.
    Schulte, B., & Sachs, A. L. (2020). The price-setting newsvendor with Poisson demand. European Journal of Operational Research, 283(1), 125-137.
    Singh, P. V., Tan, Y., & Youn, N. (2011). A hidden Markov model of developer learning dynamics in open source software projects. Information Systems Research, 22(4), 790-807.
    Valendin, J., Reutterer, T., Platzer, M., & Kalcher, K. (2022). Customer base analysis with recurrent neural networks. International Journal of Research in Marketing, 39(4), 988-1018.
    Ziel, F. (2022). M5 competition uncertainty: Overdispersion, distributional forecasting, GAMLSS, and beyond. International Journal of Forecasting, 38(4), 1546-1554.
    Zucchini, W., MacDonald, I.L., & Langrock, R. (2016). Hidden Markov Models for Time Series: An Introduction Using R, Second Edition (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b20790
    描述: 碩士
    國立政治大學
    資訊管理學系
    110356039
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110356039
    数据类型: thesis
    显示于类别:[資訊管理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    603901.pdf3079KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈