English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51193403      Online Users : 910
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146341


    Title: 條件目標波動度策略 — 波動度指數之運用與多國比較分析
    Conditional Target Volatility Strategy - Use of Volatility Index and Multi-Country Comparative Analysis
    Authors: 文莛橞
    Wen, Ting-Hui
    Contributors: 林信助
    文莛橞
    Wen, Ting-Hui
    Keywords: 目標波動度策略
    波動度指數
    已實現波動度
    投資組合
    多國比較
    Volatility Targeting Strategy
    Volatility Index
    Realized Volatility
    Portfolio
    Multi-Country Comparisons
    Date: 2023
    Issue Date: 2023-08-02 13:13:18 (UTC+8)
    Abstract: 本研究延伸 Bongaerts et al. (2020) 之條件目標波動度策略,探討波動度指數的運用及模型設定,並透過不同市場的比較分析,來驗證波動度指數在傳統與條件目標波動度策略中對提升投資組合報酬及降低下檔風險的有效性。考慮投資人風險偏好之差異,我們同時在傳統與條件目標波動度策略中加入最大槓桿程度的設定,不僅使兩種策略能在同一基準進行比較,並容許投資人可以根據自身風險態度選擇合適之槓桿程度。在實證方面,我們針對美國、臺灣、中國、日本和歐洲等五大市場進行分析,採用S&P 500指數、臺灣加權股價指數、香港恆生指數、日經225指數和歐洲50指數等股價指數及其相對應的波動度指數。實證結果顯示條件目標波動度策略相較於傳統目標波動度策略保守,能更有效的降低下檔風險且周轉率較低,報酬表現則不一。且當最大槓桿程度為1時,降低下檔風險的效果較好,周轉率也較低;而當最大槓桿程度為2,報酬表現較佳。本研究的貢獻在於,闡明條件目標波動度策略在不同國家的應用,並驗證採用波動度指數能更有效的降低下檔風險,周轉率也較低,可以節省投資人的交易成本。
    This thesis extends the conditional target volatility strategy of Bongaerts et al. (2020), and explores the usefulness of volatility indices. Through a comparative analysis of different markets, we demonstrate the effectiveness of volatility indices in enhancing portfolio returns and reducing downside risk in both conventional and conditional target volatility strategies. Considering the difference in investors` risk preferences, we also impose the same leverage ratio in both the conventional and the conditional target volatility strategies, which not only enables the two strategies to be compared on the same benchmark, but also allows investors to choose the appropriate degree of leverage according to their own risk attitude. For the empirical investigation, we analyze five major markets from the United States, Taiwan, China, Japan and Europe. Data examined in this thesis include S&P 500 Index, Taiwan Weighted Stock Index, Hong Kong Hang Seng Index, Nikkei 225 Index and Europe 50 Index and their corresponding volatility indices. The empirical results show that the conditional target volatility strategy is more conservative than the conventional target volatility strategy, which can more effectively reduce the downside risk, and the turnover rate is also lower, but results on return performance are mixed. When the maximum leverage level is set to 1, the effect of reducing downside risk is better, and the turnover rate is also lower; while, when the maximum leverage level is set to 2, the return performance is better. This thesis contributes to clarify the application of the conditional target volatility strategy in different countries. In addition, we verify that using volatility indices has a better effect on downside risk control, and entails lower turnover rates which imply lower transaction costs for investors.
    Reference: Bongaerts, D., Kang, X., & van Dijk, M. (2020). Conditional volatility targeting. Financial Analysts Journal, 76(4), 54-71.

    Dachraoui, K. (2018). On the Optimality of Target Volatility Strategies. Journal of Portfolio Management, 44(5):58–67.

    Barber, B. M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. The journal of Finance, 55(2), 773-806.

    Cirelli, S., Lozza, S. O., & Moriggia, V. (2017). A conservative discontinuous target volatility strategy. Investment Management & Financial Innovations, 14(2), 176.

    Giese, G. (2010). On the risk-return profile of leveraged and inverse ETFs. Journal of Asset Management, 11(4), 219-228.

    Harvey, C. R., Hoyle, E., Korgaonkar, R., Rattray, S.,
    Sargaison, M., & Van Hemert, O. (2018). The impact of volatility targeting. Available at SSRN 3175538.

    Hallerbach, W. G. (2012). A proof of the optimality of volatility weighting over time. Available at SSRN 2008176.

    Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?. Journal of applied econometrics, 20(7), 873-889.

    Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: a joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6), 877-906.

    Henkel, S. J., Martin, J. S., & Nardari, F. (2011). Time-varying short-horizon predictability. Journal of financial economics, 99(3), 560-580.

    Kongsilp, W., & Mateus, C. (2017). Volatility risk and stock return predictability on global financial crises. China Finance Review International, 7, 1, 33-66.

    Kritzman, M., Page, S., & Turkington, D. (2012). Regime shifts: Implications for dynamic strategies (corrected). Financial Analysts Journal, 68(3), 22-39.

    Liu, F., Tang, X., & Zhou, G. (2019). Volatility-managed portfolio: Does it really work?. The Journal of Portfolio Management, 46 (1), 38-51.

    Moreira, A., & Muir, T. (2017). Volatility‐managed portfolios. The Journal of Finance, 72(4), 1611-1644.

    Mylnikov, G. (2021). Volatility Targeting: It’s Complicated!. The Journal of Portfolio Management, 47(8), 57-74.

    Nadarajah, S., Zhang, B., & Chan, S. (2014). Estimation methods for expected shortfall. Quantitative Finance, 14(2), 271-291.

    Pong, S., Shackleton, M. B., Taylor, S. J., & Xu, X. (2004). Forecasting currency volatility: A comparison of implied volatilities and AR (FI) MA models. Journal of Banking & Finance, 28(10), 2541-2563.

    Whaley, R. E. (2009). Understanding the VIX. Journal of Portfolio Management, 35(3), 98-105.

    Qian, E., Sorensen, E. H., & Hua, R. (2007). Information horizon, portfolio turnover, and optimal alpha models. The Journal of Portfolio Management, 34(1), 27-40.
    Description: 碩士
    國立政治大學
    國際經營與貿易學系
    110351031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110351031
    Data Type: thesis
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    103101.pdf1214KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback