Reference: | Belton, N., Lawlor, A., and Curran, K. M. (2021). Semi-supervised siamese network for identifying bad data in medical imaging datasets. arXiv preprint arXiv:2108.07130. Breiman, L. (2001). Random forests. Machine learning, 45:5–32. Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: identifying density- based local outliers. In Proceedings of the 2000 ACM SIGMOD international confer- ence on Management of data, pages 93–104. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature verifi- cation using a” siamese” time delay neural network. Advances in neural information processing systems, 6. Brümmer, N., Cumani, S., Glembek, O., Karafiát, M., Matějka, P., Pešán, J., Plchot, O., Soufifar, M., Villiers, E. d., and Černockỳ, J. H. (2012). Description and analysis of the brno276 system for lre2011. In Odyssey 2012-the speaker and language recognition workshop. Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3):1–58. Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: syn- thetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20:273– 297. Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1):21–27. Durkota, K., Linda, M., Ludvik, M., and Tozicka, J. (2020). Neuron-net: Siamese network for anomaly detection. Technical report, Tech. Report in DCASE2020 Challenge Task 2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2020). Generative adversarial networks. Communi- cations of the ACM, 63(11):139–144. Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE. Han, S., Hu, X., Huang, H., Jiang, M., and Zhao, Y. (2022). Adbench: Anomaly detection benchmark. arXiv preprint arXiv:2206.09426. Hilal, W., Gadsden, S. A., and Yawney, J. (2022). Financial fraud:: A review of anomaly detection techniques and recent advances. Khatri, S., Arora, A., and Agrawal, A. P. (2020). Supervised machine learning algorithms for credit card fraud detection: a comparison. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pages 680–683. IEEE. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444. LeNail, A. (2019). Nn-svg: Publication-ready neural network architecture schematics. Journal of Open Source Software, 4(33):747. Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth ieee international conference on data mining, pages 413–422. IEEE. Moustafa, N. and Slay, J. (2015). Unsw-nb15: a comprehensive data set for network intru- sion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE. Olszewski, R. T. (2001). Generalized feature extraction for structural pattern recognition in time-series data. Carnegie Mellon University. Pang, G., Shen, C., and van den Hengel, A. (2019). Deep anomaly detection with devia- tion networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 353–362. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830. Scholkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J., et al. (2000). Sup- port vector method for novelty detection. Advances in neural information processing systems, 12(3):582–588. Scott, A. J. and Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance. Biometrics, pages 507–512. Song, S. and Baek, J. G. (2020). New anomaly detection in semiconductor manufacturing process using oversampling method. In 12th International Conference on Agents and Artificial Intelligence, ICAART 2020, pages 926–932. SciTePress. Takimoto, H., Seki, J., F. Situju, S., and Kanagawa, A. (2022). Anomaly detection using siamese network with attention mechanism for few-shot learning. Applied Artificial Intelligence, 36(1):2094885. Tantithamthavorn, C., Hassan, A. E., and Matsumoto, K. (2018). The impact of class re- balancing techniques on the performance and interpretation of defect prediction models. IEEE Transactions on Software Engineering, 46(11):1200–1219. |