English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51203119      Online Users : 926
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/145944
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/145944


    Title: 使用隨機漫步的監督式學習
    Random Walk-based Supervised Learning
    Authors: 羅嘉承
    Lo, Chia-Cheng
    Contributors: 周珮婷
    陳怡如

    羅嘉承
    Lo, Chia-Cheng
    Keywords: 監督式學習
    分類
    相似度
    隨機漫步
    馬可夫鏈
    OutRank
    Supervised Learning
    Classification
    Similarity
    Random walk
    Markov Chain
    OutRank
    Date: 2023
    Issue Date: 2023-07-06 17:05:14 (UTC+8)
    Abstract: OutRank 原是一種基於對像相似性所進行的異常偵測方法。不同於
    以距離或是密度來偵測的形式,OutRank 以計算資料點間的相似性,
    來找出在資料中的異常小族群。本論文延伸此概念,擴展應用到分
    類、監督式學習的問題上。根據 OutRank 的性質,我們可以得到各筆
    資料間的相似度,因此我們假設同一族群間的相似度會較接近。在本
    論文中,我們會針對不同的資料去做驗證,並且與經典的分類方法 :
    Random Forest 去做比較。
    OutRank was originally developed as an anomaly detection method based on object similarity. Unlike distance or density-based detection approaches, OutRank calculates the similarity between data points to identify small anomaly groups within the data. This study extends the concept of OutRank and applies it to classification and supervised learning problems. Based on the nature of OutRank, we assume that the similarity between data points within the same group will be higher. In this study,we verify this assumption using different datasets and compare the results with the classic classification method, Random Forest.
    Reference: Ahmed, M., Kashem, M. A., Rahman, M., and Khatun, S. (2020). Review and analysis
    of risk factor of maternal health in remote area using the internet of things (iot). In
    InECCE2019: Proceedings of the 5th International Conference on Electrical, Control
    & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019, pages 357–365.
    Springer.
    Ait Mohamed, L., Cherfa, A., Cherfa, Y., Belkhamsa, N., and Alim-Ferhat, F. (2021).
    Hybrid method combining superpixel, supervised learning, and random walk for glioma
    segmentation. International journal of imaging systems and technology, 31(1):288–
    301.
    Bachelier, L. (1900). Théorie de la spéculation. In Annales scientifiques de l’École normale supérieure, volume 17, pages 21–86.
    Backstrom, L. and Leskovec, J. (2011). Supervised random walks: predicting and recommending links in social networks. In Proceedings of the fourth ACM international
    conference on Web search and data mining, pages 635–644.
    Breiman, L. (2001). Random forests. Machine learning, 45:5–32.
    Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P. A., Łukasik, S., and Żak, S.
    (2010). Complete gradient clustering algorithm for features analysis of x-ray images.
    In Information Technologies in Biomedicine: Volume 2, pages 15–24. Springer.
    Chotard, A. and Auger, A. (2019). Verifiable conditions for the irreducibility and aperiodicity of markov chains by analyzing underlying deterministic models.
    Chua, L. O. and Roska, T. (1993). The cnn paradigm. IEEE Transactions on Circuits and
    Systems I: Fundamental Theory and Applications, 40(3):147–156.
    ÇINAR, İ., Koklu, M., and Taşdemir, Ş. (2020). Classification of raisin grains using
    machine vision and artificial intelligence methods. Gazi Mühendislik Bilimleri Dergisi,
    6(3):200–209.
    Codling, E. A., Plank, M. J., and Benhamou, S. (2008). Random walk models in biology.
    Journal of the Royal society interface, 5(25):813–834.
    Cunningham, P., Cord, M., and Delany, S. J. (2008). Supervised learning. Machine
    learning techniques for multimedia: case studies on organization and retrieval, pages
    21–49.
    Er, M. B. and Aydilek, I. B. (2019). Music emotion recognition by using chroma spectrogram and deep visual features. International Journal of Computational Intelligence
    Systems, 12(2):1622–1634.
    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals
    of eugenics, 7(2):179–188.
    King, R., Orlowska, M., and Studer, R. (2003). On the move to meaningful internet
    systems 2003.
    Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., and Klein, M. (2002). Logistic regression. Springer.
    Li, J. (2019). Regression and classification in supervised learning. In Proceedings of the
    2nd International Conference on Computing and Big Data, pages 99–104.
    Liu, K., Xu, H. L., Liu, Y., and Zhao, J. (2013). Opinion target extraction using partiallysupervised word alignment model. In IJCAI, volume 13, pages 2134–2140.
    Liu, X., Yi, W., Xi, B., Dai, Q., et al. (2022). Identification of drug-disease associations
    using a random walk with restart method and supervised learning. Computational and
    Mathematical Methods in Medicine, 2022.
    Lu, W., Zhuang, Y., and Wu, J. (2009). Discovering calligraphy style relationships by
    supervised learning weighted random walk model. Multimedia systems, 15:221–242.
    Moghaddam, F. B., Bigham, B. S., et al. (2018). Extra: Expertise-boosted model for trustbased recommendation system based on supervised random walk. Comput. Informatics,
    37(5):1209–1230.
    Moonesinghe, H. and Tan, P.-N. (2006). Outlier detection using random walks. In 2006
    18th IEEE international conference on tools with artificial intelligence (ICTAI’06),
    pages 532–539. IEEE.
    Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking:
    Bringing order to the web. Technical report, Stanford infolab.
    Pillai, S. U., Suel, T., and Cha, S. (2005). The perron-frobenius theorem: some of its
    applications. IEEE Signal Processing Magazine, 22(2):62–75.
    Rish, I. et al. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001
    workshop on empirical methods in artificial intelligence, volume 3, pages 41–46.
    Scalas, E. (2006). The application of continuous-time random walks in finance and economics. Physica A: Statistical Mechanics and its Applications, 362(2):225–239.
    Description: 碩士
    國立政治大學
    統計學系
    110354010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110354010
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401001.pdf830KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback