Reference: | Ahmed, M., Kashem, M. A., Rahman, M., and Khatun, S. (2020). Review and analysis of risk factor of maternal health in remote area using the internet of things (iot). In InECCE2019: Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019, pages 357–365. Springer. Ait Mohamed, L., Cherfa, A., Cherfa, Y., Belkhamsa, N., and Alim-Ferhat, F. (2021). Hybrid method combining superpixel, supervised learning, and random walk for glioma segmentation. International journal of imaging systems and technology, 31(1):288– 301. Bachelier, L. (1900). Théorie de la spéculation. In Annales scientifiques de l’École normale supérieure, volume 17, pages 21–86. Backstrom, L. and Leskovec, J. (2011). Supervised random walks: predicting and recommending links in social networks. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 635–644. Breiman, L. (2001). Random forests. Machine learning, 45:5–32. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P. A., Łukasik, S., and Żak, S. (2010). Complete gradient clustering algorithm for features analysis of x-ray images. In Information Technologies in Biomedicine: Volume 2, pages 15–24. Springer. Chotard, A. and Auger, A. (2019). Verifiable conditions for the irreducibility and aperiodicity of markov chains by analyzing underlying deterministic models. Chua, L. O. and Roska, T. (1993). The cnn paradigm. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(3):147–156. ÇINAR, İ., Koklu, M., and Taşdemir, Ş. (2020). Classification of raisin grains using machine vision and artificial intelligence methods. Gazi Mühendislik Bilimleri Dergisi, 6(3):200–209. Codling, E. A., Plank, M. J., and Benhamou, S. (2008). Random walk models in biology. Journal of the Royal society interface, 5(25):813–834. Cunningham, P., Cord, M., and Delany, S. J. (2008). Supervised learning. Machine learning techniques for multimedia: case studies on organization and retrieval, pages 21–49. Er, M. B. and Aydilek, I. B. (2019). Music emotion recognition by using chroma spectrogram and deep visual features. International Journal of Computational Intelligence Systems, 12(2):1622–1634. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):179–188. King, R., Orlowska, M., and Studer, R. (2003). On the move to meaningful internet systems 2003. Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., and Klein, M. (2002). Logistic regression. Springer. Li, J. (2019). Regression and classification in supervised learning. In Proceedings of the 2nd International Conference on Computing and Big Data, pages 99–104. Liu, K., Xu, H. L., Liu, Y., and Zhao, J. (2013). Opinion target extraction using partiallysupervised word alignment model. In IJCAI, volume 13, pages 2134–2140. Liu, X., Yi, W., Xi, B., Dai, Q., et al. (2022). Identification of drug-disease associations using a random walk with restart method and supervised learning. Computational and Mathematical Methods in Medicine, 2022. Lu, W., Zhuang, Y., and Wu, J. (2009). Discovering calligraphy style relationships by supervised learning weighted random walk model. Multimedia systems, 15:221–242. Moghaddam, F. B., Bigham, B. S., et al. (2018). Extra: Expertise-boosted model for trustbased recommendation system based on supervised random walk. Comput. Informatics, 37(5):1209–1230. Moonesinghe, H. and Tan, P.-N. (2006). Outlier detection using random walks. In 2006 18th IEEE international conference on tools with artificial intelligence (ICTAI’06), pages 532–539. IEEE. Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Technical report, Stanford infolab. Pillai, S. U., Suel, T., and Cha, S. (2005). The perron-frobenius theorem: some of its applications. IEEE Signal Processing Magazine, 22(2):62–75. Rish, I. et al. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence, volume 3, pages 41–46. Scalas, E. (2006). The application of continuous-time random walks in finance and economics. Physica A: Statistical Mechanics and its Applications, 362(2):225–239. |