English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113869/144892 (79%)
Visitors : 51900371      Online Users : 381
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/145867
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/145867


    Title: 運用共整合關係以及 copula 函數的加密貨幣配對交易
    Cryptocurrency Trading Strategies with Cointegration and Copula
    Authors: 陳品均
    Chen, Pin-Chun
    Contributors: 張興華
    Chang, Hsing-Hua
    陳品均
    Chen, Pin-Chun
    Keywords: 加密貨幣
    關聯結構函數
    配對交易
    共整合關係
    Cryptocurrency
    Pairs trading
    Copula
    Cointegration
    Date: 2023
    Issue Date: 2023-07-06 16:48:31 (UTC+8)
    Abstract: 本研究探討加密貨幣的配對交易,研究加密貨幣市值前三大的幣種,比特 幣、以太幣以及幣安幣,並且分別依據 Sklar (1959)提出的關聯結構函數以 及 Engle - Granger (1987)提出的二階段共整合檢定來構建配對交易,並且比 較兩種模型捕捉出來訊號的準確程度,由於資產報酬率分配的不對稱性,透過 雙變量關聯結構函數構建的交易策略考慮了左尾或右尾依賴關係較顯著的關聯 結構函數,確保交易訊號能夠更準確的被捕捉,並且不用對資產進行常態假
    設 ; 而二階段共整合檢定先確定兩幣種長期下存在共整合關係,並且在價差擴 大時進行交易。實證結果表明,三幣種在長期下皆存在共整合關係,而二階段 共整合檢定構建的交易策略進場機會較多,但平均報酬率較低,且 Sharpe ratio 也較低。
    而透過雙變量關聯結構函數構建的交易策略交易機會較少,但整體報酬率較 高,並且 Sharpe ratio 也較高,顯示雙變量關聯結構函數構建的交易策略能更 準確的辨別交易機會,所捕捉的交易訊號更精確,有更好的獲利能力。
    The purpose of this paper is to investigate pair trading in cryptocurrencies, focusing on the top three cryptocurrencies by market capitalization: Bitcoin, Ethereum, and Binance Coin. The study constructs pair trading strategies using two different models: the bivariate copula proposed by Sklar (1959) and the two-step cointegration analysis proposed by Engle and Granger (1987). To evaluate the accuracy of trading signals the model captured, we compare the profitability of two approaches.
    In pair trading strategies, the core conception is the correlation between two assets. The traditional approaches: distance approach, cointegration approach, and the stochastic spread approach are based on the linear hypothesis, which is the Achilles’ heel of traditional pair trading strategies. To overcome this restriction, this paper employs the copula, which can totally describe the dependence between variables and model joint distributions. Due to the asymmetries of financial returns, the trading strategy that considers the copula can seize the signal more effective.
    The empirical results suggest that copula approach is more profitable, although the number of trading opportunities is lower, the mean return and total return is higher, and the standard deviation is lower. The copula approach is completely shown to have more probability as a pair trading model to construct a strategy.
    Reference: 1. Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.
    2. Vidyamurthy, G. (2004). Pairs Trading: quantitative methods and analysis (Vol. 217). John Wiley & Sons.
    3. Phillips, P. C., & Ouliaris, S. (1990). Asymptotic properties of residual based tests for cointegration. Econometrica: journal of the Econometric Society, 165-193.
    4. Gregory, A. W., & Hansen, B. E. (1996). Residual-based tests for cointegration in models with regime shifts. Journal of econometrics, 70(1), 99-126.
    5. Bação, P., Duarte, A. P., Sebastião, H., & Redzepagic, S. (2018). Information transmission between cryptocurrencies: does bitcoin rule the cryptocurrency world? Scientific Annals of Economics and Business, 65(2), 97-117.
    6. Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. Journal of Economics and Financial Analysis, 2(2), 1-27.
    7. Ciaian, P., & Rajcaniova, M. (2018). Virtual relationships: Short-and long-run evidence from BitCoin and altcoin markets. Journal of International Financial Markets, Institutions and Money, 52, 173-195.
    8. Leung, T., & Nguyen, H. (2019). Constructing cointegrated cryptocurrency portfolios for statistical arbitrage. Studies in Economics and Finance.
    9. Gatev, E.., Goetzmann, W. N., & Rouwenhorst, K. G. (2006). Pairs trading: Performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3), 797-827.
    10. Bolgün, K. E., Kurun, E., & Güven, S. (2010). Dynamic Pairs Trading Strategy for the Companies Listed in the Istanbul Stock Exchange. International Review of Applied Financial Issues & Economics, 2(1).
    11.Xie, W., Liew, R. Q., Wu, Y., & Zou, X. (2016). Pairs trading with copulas. The Journal of Trading, 11(3), 41-52.
    12. Ferreira, P. H., Fiaccone, R. L., Lordelo, J. S., Sena, S. O., & Duran, V. R. (2019). Bivariate Copula-based Linear Mixed-effects Models: An Application to Longitudinal Child Growth Data. TEMA (São Carlos), 20, 37-59.
    13. Stander, Y., Marais, D., & Botha, I. (2013). Trading strategies with copulas. Journal of Economic and Financial Sciences, 6(1), 83-107.
    14. Hanson, T. A., & Hall, J. (2012). Statistical arbitrage trading strategies and high frequency trading. Available at SSRN 2147012.
    15. Mahfoud, M., & Michael, M. (2012). Bivariate Archimedean copulas: an application to two stock market indices. BMI Paper, 1517333.
    16. Rad, H., Low, R. K. Y., & Faff, R. (2016). The profitability of pairs trading strategies: distance, cointegration and copula methods. Quantitative Finance, 16(10), 1541-1558.
    17. Landgraf, N. I. K. O. L. A. U. S., SCHOLTUS, K., & DIRIS, D. B. (2016). High-Frequency copula-based pairs trading on US Goldmine Stocks. Erasmus University Thesis Repository.
    18. Xie, W., & Wu, Y. (2015). Copula-based pairs trading strategy. SSRN.
    19. Liew, R. Q., & Wu, Y. (2013). Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds, 19, 12-30.
    20. Catalini, C., & Gans, J. S. (2020). Some simple economics of the blockchain. Communications of the ACM, 63(7), 80-90.
    21. Leung, T., & Nguyen, H. (2019). Constructing cointegrated cryptocurrency portfolios for statistical arbitrage. Studies in Economics and Finance.
    22. Jeleskovic, V., Meloni, M., & Younas, Z. I. (2020). Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations (No. 34-2020). MAGKS Joint Discussion Paper Series in Economics.
    Description: 碩士
    國立政治大學
    金融學系
    110352030
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110352030
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2158View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback