政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/145730
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51081171      Online Users : 986
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/145730


    Title: 含外生多變量TAR模型分析及其應用在黃金價格的預測
    Multivariate TAR Model with Exogenous Variables Analysis and its Applications to the Gold Price Forecasting
    Authors: 侯博耀
    Hou, Bo-Yao
    Contributors: 曾正男
    侯博耀
    Hou, Bo-Yao
    Keywords: 外生變數
    ARIMA
    TAR
    門檻值
    黃金價格
    Exogenous variables
    ARIMA
    TAR
    Threshold
    Gold price
    Date: 2023
    Issue Date: 2023-07-06 15:24:06 (UTC+8)
    Abstract: 本研究利用含外生多變量門檻自迴歸(TAR)模型,分析並預測110年至112年的黃金價格。相較傳統的ARIMA模型,含外生多變量TAR模型更能有效反映時間數列結構改變的過程與趨勢,對於預測上具有更大的優勢。此外,TAR模型的適用範圍很廣,因為時間數列通常為非線性,而且容易受到多個變數影響,因此加入多個外生變數,可以更準確的分析資料並進行預測。我們以黃金價格為例,提出之多變量TAR模型,較傳統預測模型有更高的預測精準度。研究目標:含外生多變量TAR模型分析及其預測。研究方法:找出含外生多變量門檻函數,計算含外生多變量TAR門檻值並進行模式架構分析及其預測。研究發現:含外生多變量TAR模型預測能力較傳統預測方法更佳。研究創新:提出外生變數門檻模式演算法。研究價值:財務實證分析上預測策略。


    In this research, we use a multivariate threshold autoregressive (TAR) model with exogenous variables to analyze and predict the gold price from 110 to 112 years. Compared with the traditional ARIMA model, the multivariate TAR model with exogenous variables can more effectively reflect the process and trend of time series structure changes, and has greater advantages in prediction. In addition, the TAR model has a wide range of applications, because the time series generally has nonlinear phenomena and is easily affected by multiple variables. Therefore, adding multiple exogenous variables as a consideration can analyze the data and make predictions more accurately. Taking the gold price as an example, the multivariate TAR model proposed has higher prediction accuracy than traditional forecasting models. Research Objectives: Analysis and prediction of multivariate TAR model with exogenous factors. Research Methods: Find out the exogenous multivariate threshold function, calculate the multivariate TAR threshold with exogenous variables, and conduct model architecture analysis and prediction. Research Findings: The multivariate TAR model with exogenous variables predictive ability is better than traditional forecasting methods. Research Innovation: Proposed exogenous variable threshold model algorithm. Research Value: Forecasting Strategies in Financial Empirical Analysis.
    Reference: 1.經濟部能源局https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx
    2.吳柏林(1995)時間數列分析導論。台北:華泰書局。
    3.楊奕農(2009)時間序列分析:經濟與財務上之應用。台北,雙葉書廊。
    4.Tong H. and Lim K. S. (1980). Threshold Autoregressive, Limit Cycles and Cyclical Data (with Discussion), Journal of the Royal Statistical Society. Series B, Vol.42, No.3, pp.245-292.
    5.Subba Rao T. and Gabr M. (1980). A test for linearity of stationary time series analysis, Journal of Time Series Analysis , Vol.1, No.1, pp145-158.
    6.Haggan V. and Ozaki T. (1980). Amplitude-dependent Exponential AR Model Fitting for Non-linear Random Vibrations, in Time Series, (O. D. Anderson ed.), North-Holland, Amsterdam.
    7.J. D. Byers and D.A. Peel (1995). Evidence on volatility spillovers in the interwar floating exchange rate period based on high/low prices, Applied Economics Letters, Taylor and Francis Journals, Vol.2, No.10, pp394-396.
    8.Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica: Journal of the Econometric Society, 28(3), 591-605.
    9.Liu Y, Garceau NY, Loros JJ and Dunlap JC (1997). Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock, Cell, Vol.89, pp477–486 .
    10.Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica: Journal of the Econometric Society, 47-78.
    11.Andrews, D. W., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica: Journal of the Econometric Society, 1383-1414.
    12.Kumar K and Wu B (2001). Detection of change points in time series analysis with fuzzy statistics, International Journal of Systems Science, Vol.32, No.9, pp1185-1192.
    13.Zhou, H. (2005). A Bayesian approach to integrating stochastic search variable selection and change point detection. Journal of Econometrics, 126(1), 57-77.
    14.Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.
    15.Shen, Y., & Hakes, D. R. (1995). A modified threshold regression approach to measuring discrimination. Journal of Human Resources, 30(3), 457-477.
    16.Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of econometrics, 93(2), 345-368.
    Description: 碩士
    國立政治大學
    應用數學系
    106751009
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106751009
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File Description SizeFormat
    100901.pdf1545KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback