政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143828
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 50950809      在线人数 : 921
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/143828


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/143828


    题名: 文字探勘ESG新聞情緒分析對股票報酬率之研究-以臺灣大型股為例
    Analysis of Sentiment in ESG News with Text Mining for the Impact of Stock Market Returns - The Case of Large Cap Firms in Taiwan
    作者: 廖渝瑄
    Liao, Yu-Hsuan
    贡献者: 楊曉文
    廖渝瑄
    Liao, Yu-Hsuan
    关键词: 企業社會責任
    ESG新聞
    情緒分析
    文字探勘
    資產定價
    Corporate Social Responsibility
    ESG News
    Sentiment Analysis
    Text Mining
    Asset Pricing
    日期: 2023
    上传时间: 2023-03-09 18:35:34 (UTC+8)
    摘要: 近年來由於經濟迅速發展造成環境破壞,全球永續意識抬頭,大眾、企業與政府逐漸重視企業社會責任 (CSR),進而產生許多評估企業CSR表現的方式,但大多以永續報告書作為評估標準,每年發佈對於短期投資人來說並不效率,故本研究以ESG媒體情緒作為一種衡量企業CSR表現的指標,透過文字探勘、情感分析為投資人提供衡量企業CSR表現的分析模式,搜集主觀(PTT平台)與客觀(中央通訊社)媒體新聞進行文本分類與情緒分析,了解媒體對企業CSR表現的評價與形象。
    本研究透過企業永續報告書建構ESG環境、社會、公司治理分類詞表作新聞文本分類,文本情感分析使用雙向長短記憶神經網路(Bi-LSTM)模型,並將新聞文本根據情緒傾向分為「正面」、「負面」,且將樣本資料分割為前疫情時期與後疫情時期,最後使用Fama-Macbeth(1973)迴歸模型分析,深入探討ESG媒體情緒與報酬率之關聯與後疫情時代ESG媒體情緒之影響力。
    經本研究搜集資料對其進行分析之實證結果的研究結論主要如下:(1)ESG媒體情緒傾向於正向短期股價報酬率。(2)不同資料來源情緒傾向不同,對投資人的影響也不同。(3) ESG媒體情緒有分類衡量的必要。 (4)媒體情緒對個股報酬率有短期正向效果,延遲反向效果,且分類為正負面後,正面新聞有短期正向效果,負面新聞則有延遲反向效果。 (5)ESG負面新聞對股價報酬率有延遲反向效果,正面新聞不影響。(6)後疫情時代新聞情緒對個股報酬率影響程度提高,但ESG新聞則無。
    In recent years, due to the environmental damage caused by the rapid economic development, the global awareness of sustainability has risen. The public, enterprises and governments have gradually paid attention to corporate social responsibility (CSR). There are many methods to evaluate the CSR performance of enterprises now, but most of them use the sustainability reports as the standard. It is not efficient to use yearly information for short-term investors. Therefore, this study uses ESG media sentiment as an indicator to measure corporate CSR performance, and provides investors with an analysis model to measure corporate CSR performance by text mining and sentiment analysis. By collecting subjective and objective media, the research conducts text classification and sentiment analysis of news to understand the media`s evaluation and image of corporate CSR performance.
    This research constructs ESG environmental, social, and governance classification vocabulary for news classification through corporate sustainability reports. Bidirectional long short-term memory (Bi-LSTM) is used to text sentiment analysis. We divide news into "positive" and "negative" according to their emotional tendencies, and divide the sample data into pre-pandemic and post-pandemic periods. Finally, Fama-Macbeth (1973) regression model is used to analyze the relationship between ESG media sentiment and stock price returns. Furthermore, we study the influence of ESG media sentiment in the post-pandemic era.
    The empirical results and analysis of the data collected in this study are mainly as follows: (1) ESG media sentiment tends to have a positive impact on the short-term stock price returns. (2) There are different sentimental tendencies and influences on investors from different news sources. (3) ESG media sentiment needs to be classified. (4) Media sentiment has a short-term positive effect and a delayed negative effect on the rate of return of individual stocks. After being classified into positive and negative, media sentiment of positive news has a short-term positive effect, and that of negative news has a delayed negative effect. (5) Negative ESG news has a delayed reverse effect on stock returns, while positive news has no effect. (6) In the post-pandemic era, the impact of news sentiment on stock returns has increased, but ESG news has not.
    參考文獻: 元大投信。元大台灣卓越50證券投資信託基金。取自https://www.yuantaetfs.com/product/detail/0050/ratio

    天下雜誌。CSR歷屆得獎企業排行-2020-大型企業。取自https://topic.cw.com.tw/csr/search.aspx

    台灣經濟新報(TEJ)資料庫。三、個股股價資料庫欄位一覽表——原始及調整後。取自https://www.tej.com.tw/webtej/tej_doc/a_tejmain/g_wprcd4.htm

    陳至中(2022年04月23日)。世新調查:傳統媒體電子版以中央社最獲青睞。中央社。取自 https://www.cna.com.tw/news/ahel/202204230076.aspx

    機器之心(2018年8月24日)。Senta:基於語義和大數據的百度情感分類。取自 https://www.jiqizhixin.com/articles/2018-08-24-18

    Albuquerque, R., Koskinen, Y., & Zhang, C. (2019). Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science, 65(10), 4451-4469.

    Albuquerque, R., Koskinen, Y., Yang, S., & Zhang, C. (2020). Resiliency of environmental and social stocks: An analysis of the exogenous COVID-19 market crash. The Review of Corporate Finance Studies, 9(3), 593-621.

    Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of financial markets, 5(1), 31-56.

    Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The Journal of finance, 59(3), 1259-1294.

    Aouadi, A., & Marsat, S. (2018). Do ESG controversies matter for firm value? Evidence from international data. Journal of Business Ethics, 151(4), 1027-1047.

    Bae, K. H., El Ghoul, S., Gong, Z. J., & Guedhami, O. (2021). Does CSR matter in times of crisis? Evidence from the COVID-19 pandemic. Journal of Corporate Finance, 67, 101876.

    Baig, A. S., Butt, H. A., Haroon, O., & Rizvi, S. A. R. (2021). Deaths, panic, lockdowns and US equity markets: The case of COVID-19 pandemic. Finance research letters, 38, 101701.

    Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross‐section of stock returns. The journal of Finance, 61(4), 1645-1680.

    Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., Pouliquen, B. and Belyaeva, J. (2013) Sentiment analysis in the news, arXiv preprint arXiv:1309.6202.

    Barinov, A. (2014). Turnover: liquidity or uncertainty?. Management Science, 60(10), 2478-2495.

    Bialkowski, J., & Starks, L. T. (2016). SRI funds: Investor demand, exogenous shocks and ESG profiles.

    Bian, S., Jia, D., Li, F., & Yan, Z. (2021). A New Chinese Financial Sentiment Dictionary for Textual Analysis in Accounting and Finance. Available at SSRN 3446388.

    Black, F. (1986). Noise. The journal of finance, 41(3), 528-543.

    Bolton, P., & Kacperczyk, M. (2021). Do investors care about carbon risk?. Journal of Financial Economics, 142(2), 517-549.

    Bonsall IV, S. B., Green, J., & Muller III, K. A. (2020). Market uncertainty and the importance of media coverage at earnings announcements. Journal of Accounting and Economics, 69(1), 101264.

    Bourezk, H., Raji, A., Acha, N., & Barka, H. (2020, April). Analyzing Moroccan Stock Market using Machine Learning and Sentiment Analysis. In 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-5). IEEE.

    Broadstock, D. C., & Zhang, D. (2019). Social-media and intraday stock returns: The pricing power of sentiment. Finance Research Letters, 30, 116-123.

    Broadstock, D. C., Chan, K., Cheng, L. T., & Wang, X. (2021). The role of ESG performance during times of financial crisis: Evidence from COVID-19 in China. Finance research letters, 38, 101716.

    Burke, J. J. (2022). Do boards take environmental, social, and governance issues seriously? Evidence from Media Coverage and CEO Dismissals. Journal of Business Ethics, 176(4), 647-671.

    Cakici, N., Chan, K., & Topyan, K. (2017). Cross-sectional stock return predictability in China. The European Journal of Finance, 23(7-9), 581-605.

    Callen, J. L., Khan, M., & Lu, H. (2013). Accounting quality, stock price delay, and future stock returns. Contemporary Accounting Research, 30(1), 269-295.

    Capelle-Blancard, G., & Petit, A. (2019). Every little helps? ESG news and stock market reaction. Journal of Business Ethics, 157(2), 543-565.

    Chelley‐Steeley, P., Lambertides, N., & Savva, C. S. (2019). Sentiment, order imbalance, and co‐movement: An examination of shocks to retail and institutional trading activity. European Financial Management, 25(1), 116-159.

    Chen, H. Y., & Yang, S. S. (2020). Do investors exaggerate corporate ESG information? Evidence of the ESG momentum effect in the Taiwanese market. Pacific-Basin Finance Journal, 63, 101407.

    Chen, T. Y., Chao, C. H., & Wu, Z. X. (2021). Does the turnover effect matter in emerging markets? Evidence from China. Pacific-Basin Finance Journal, 67, 101551.

    Chen, T., Dong, H., & Lin, C. (2020). Institutional shareholders and corporate social responsibility. Journal of Financial Economics, 135(2), 483-504.

    Cheng, F., Chiao, C., Wang, C., Fang, Z., & Yao, S. (2021). Does retail investor attention improve stock liquidity? A dynamic perspective. Economic Modelling, 94, 170-183.

    Cheng, H., Xie, Z., Wu, L., Yu, Z., & Li, R. (2019). Data prediction model in wireless sensor networks based on bidirectional LSTM. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1-12.

    Connolly, R. A., & Wang, F. A. (2000). On stock market return co-movements: macroeconomic news, dispersion of beliefs, and contagion. Dispersion of Beliefs, and Contagion (June 2000).

    Coqueret, G. (2020). Stock-specific sentiment and return predictability. Quantitative Finance, 20(9), 1531-1551.

    Cornell, B. (2021). ESG preferences, risk and return. European Financial Management, 27(1), 12-19.

    Crane, A., & Matten, D. (2020). COVID‐19 and the future of CSR research. Journal of Management Studies.

    Datar, V. T., Naik, N. Y., & Radcliffe, R. (1998). Liquidity and stock returns: An alternative test. Journal of financial markets, 1(2), 203-219.

    Deng, S., Huang, Z. J., Sinha, A. P., & Zhao, H. (2018). The interaction between microblog sentiment and stock return: An empirical examination. MIS quarterly, 42(3), 895-918.

    Derwall, J., Guenster, N., Bauer, R., & Koedijk, K. (2005). The eco-efficiency premium puzzle. Financial Analysts Journal, 61(2), 51-63.

    Devpura, N., Narayan, P. K., & Sharma, S. S. (2018). Is stock return predictability time-varying?. Journal of International Financial Markets, Institutions and Money, 52, 152-172.

    Dey, M. K. (2005). Turnover and return in global stock markets. Emerging Markets Review, 6(1), 45-67.

    Díaz, V., Ibrushi, D., & Zhao, J. (2021). Reconsidering systematic factors during the COVID-19 pandemic–The rising importance of ESG. Finance Research Letters, 38, 101870.

    Dimson, E., Karakaş, O., & Li, X. (2015). Active ownership. The Review of Financial Studies, 28(12), 3225-3268.

    Du, H., Hao, J., He, F., & Xi, W. (2022). Media sentiment and cross-sectional stock returns in the Chinese stock market. Research in International Business and Finance, 60, 101590.

    Duz Tan, S., & Tas, O. (2021). Social media sentiment in international stock returns and trading activity. Journal of Behavioral Finance, 22(2), 221-234.

    Dyck, A., Lins, K. V., Roth, L., & Wagner, H. F. (2019). Do institutional investors drive corporate social responsibility? International evidence. Journal of Financial Economics, 131(3), 693-714.

    Easley, D., Hvidkjaer, S., & O`hara, M. (2002). Is information risk a determinant of asset returns?. The journal of finance, 57(5), 2185-2221.

    Eccles, R. G., Ioannou, I., & Serafeim, G. (2014). The impact of corporate sustainability on organizational processes and performance. Management science, 60(11), 2835-2857.

    Edmans, A. (2011). Does the stock market fully value intangibles? Employee satisfaction and equity prices. Journal of Financial economics, 101(3), 621-640.

    Engelhardt, N., Ekkenga, J., & Posch, P. (2021). Esg ratings and stock performance during the COVID-19 crisis. Sustainability, 13(13), 7133.

    Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.

    Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of political economy, 81(3), 607-636.

    Fang, H., Chung, C. P., Lu, Y. C., Lee, Y. H., & Wang, W. H. (2021). The impacts of investors` sentiments on stock returns using fintech approaches. International Review of Financial Analysis, 77, 101858.

    Garcia, D. (2013) Sentiment during recessions, The Journal of Finance, 68, 1267-1300.

    Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural computation, 12(10), 2451-2471.

    Giese, G., Nagy, Z., & Lee, L. E. (2021). Deconstructing esg ratings performance: Risk and return for e, s, and g by time horizon, sector, and weighting. The Journal of Portfolio Management, 47(3), 94-111.

    Gillan, S., Hartzell, J. C., Koch, A., & Starks, L. T. (2010). Firms’ environmental, social and governance (ESG) choices, performance and managerial motivation. Unpublished working paper, 10.

    Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.

    Guo, Y. (2020, November). Stock price prediction based on LSTM neural network: the effectiveness of news sentiment analysis. In 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME) (pp. 1018-1024). IEEE.

    Gupta, K., & Banerjee, R. (2019). Does OPEC news sentiment influence stock returns of energy firms in the United States?. Energy Economics, 77, 34-45.

    Hafez, P., & Gomez, F. (2019). Socially Responsible Investing: Combining ESG Ratings with News Sentiment Generates Alpha.

    Halkos, G., & Nomikos, S. (2021). Corporate social responsibility: Trends in global reporting initiative standards. Economic Analysis and Policy, 69, 106-117.

    Hartzmark, S. M., & Sussman, A. B. (2019). Do investors value sustainability? A natural experiment examining ranking and fund flows. The Journal of Finance, 74(6), 2789-2837.

    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

    Hoepner, A. G., Oikonomou, I., Sautner, Z., Starks, L. T., & Zhou, X. (2018). ESG shareholder engagement and downside risk.

    Hubbard, T. D., Christensen, D. M., & Graffin, S. D. (2017). Higher highs and lower lows: The role of corporate social responsibility in CEO dismissal. Strategic Management Journal, 38(11), 2255-2265.

    Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11-21.

    Kelly, S., & Ahmad, K. (2018). Estimating the impact of domain-specific news sentiment on financial assets. Knowledge-Based Systems, 150, 116-126.

    Khan, M., Serafeim, G., & Yoon, A. (2016). Corporate sustainability: First evidence on materiality. The accounting review, 91(6), 1697-1724.

    Kim, K., Ryu, D., & Yu, J. (2022). Is a sentiment-based trading strategy profitable?. Investment Analysts Journal, 51(2), 94-107.

    Kölbel, J. F., Busch, T., & Jancso, L. M. (2017). How media coverage of corporate social irresponsibility increases financial risk. Strategic Management Journal, 38(11), 2266-2284.

    KPMG (2020). KPMG Survey of Sustainability Reporting 2020. Available at https://assets.kpmg/content/dam/kpmg/xx/pdf/2020/11/the-time-has-come.pdf

    Krüger, P. (2015) Corporate goodness and shareholder wealth, Journal of Financial economics, 115, 304-329.

    Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, 1315-1335.

    Li, D., & Qian, J. (2016, October). Text sentiment analysis based on long short-term memory. In 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI) (pp. 471-475). IEEE.

    Li, T., van Dalen, J., & van Rees, P. J. (2018). More than just noise? Examining the information content of stock microblogs on financial markets. Journal of Information Technology, 33(1), 50-69.

    Lin, J. C., Singh, A. K., Sun, P. W. S., & Yu, W. (2014). Price delay premium and liquidity risk. Journal of Financial Markets, 17, 150-173.

    Luo, D. (2022). ESG, liquidity, and stock returns. Journal of International Financial Markets, Institutions and Money, 78, 101526.

    Ma, C., Xiao, S., & Ma, Z. (2018). Investor sentiment and the prediction of stock returns: a quantile regression approach. Applied Economics, 50(50), 5401-5415.

    Matsumura, E. M., Prakash, R., & Vera-Munoz, S. C. (2014). Firm-value effects of carbon emissions and carbon disclosures. The accounting review, 89(2), 695-724.

    McGurk, Z., Nowak, A., & Hall, J. C. (2020). Stock returns and investor sentiment: textual analysis and social media. Journal of Economics and Finance, 44(3), 458-485.

    Meng, XT., Zhang, W., Li, Y., Cao, X., & Feng, X. (2020). Social media effect, investor recognition and the cross-section of stock returns. International Review of Financial Analysis, 67, 101432.

    MSCI(2022). MSCI Industry Materiality Map. Available at https://www.msci.com/our-solutions/esg-investing/esg-ratings/materiality-map

    Nofsinger, J. R., Sulaeman, J., & Varma, A. (2019). Institutional investors and corporate social responsibility. Journal of Corporate Finance, 58, 700-725.

    Obaid, K., & Pukthuanthong, K. (2022). A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news. Journal of Financial Economics, 144(1), 273-297.

    Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of business, 61-65.

    Pástor, Ľ., & Vorsatz, M. B. (2020). Mutual fund performance and flows during the COVID-19 crisis. The Review of Asset Pricing Studies, 10(4), 791-833.

    Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2021). Sustainable investing in equilibrium. Journal of Financial Economics, 142(2), 550-571.

    Pedersen, L. H., Fitzgibbons, S., & Pomorski, L. (2021). Responsible investing: The ESG-efficient frontier. Journal of Financial Economics, 142(2), 572-597.

    Pencle, N., & Mălăescu, I. (2016). What`s in the words? Development and validation of a multidimensional dictionary for CSR and application using prospectuses. Journal of Emerging Technologies in Accounting, 13(2), 109-127.

    Poterba, J. M., & Summers, L. H. (1984). The persistence of volatility and stock market fluctuations (No. w1462). National Bureau of Economic Research.

    Qian, M., Sun, P. W., & Yu, B. (2017). High turnover with high price delay? Dissecting the puzzling phenomenon for China`s A-shares. Finance Research Letters, 22, 105-113.

    Rao, T., & Srivastava, S. (2012). Analyzing stock market movements using twitter sentiment analysis.

    Rao, T., & Srivastava, S. (2014). Twitter sentiment analysis: How to hedge your bets in the stock markets. In State of the art applications of social network analysis (pp. 227-247). Springer, Cham.

    Renault, T. (2017). Intraday online investor sentiment and return patterns in the US stock market. Journal of Banking & Finance, 84, 25-40.

    Rouwenhorst, K. G. (1999). Local return factors and turnover in emerging stock markets. The journal of finance, 54(4), 1439-1464.

    Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.

    Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. mcgraw-hill.

    Schmidt, A. (2019). Sustainable News–A Sentiment Analysis of the Effect of ESG Information on Stock Prices. Available at SSRN 3809657.

    Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11), 2673-2681.

    Seok, S. I., Cho, H., & Ryu, D. (2019). Firm-specific investor sentiment and daily stock returns. The North American Journal of Economics and Finance, 50, 100857.

    Serafeim, G., & Yoon, A. (2022). Which Corporate ESG News does the Market React to?. Financial Analysts Journal, 78(1), 59-78.

    Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926-957.

    Starks, L. T., Venkat, P., & Zhu, Q. (2017). Corporate ESG profiles and investor horizons. Available at SSRN 3049943.

    Sun, J. (2020). Jieba. Available at https://github.com/fxsjy/jieba.

    Sun, T., Wang, J., Zhang, P., Cao, Y., Liu, B., & Wang, D. (2017). Predicting stock price returns using microblog sentiment for chinese stock market. In 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM) (pp. 87-96). IEEE.

    Tabari, N., Biswas, P., Praneeth, B., Seyeditabari, A., Hadzikadic, M., & Zadrozny, W. (2018, July). Causality analysis of Twitter sentiments and stock market returns. In Proceedings of the first workshop on economics and natural language processing (pp. 11-19).

    Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of finance, 62(3), 1139-1168.

    Tetlock, P. C. (2011). All the news that`s fit to reprint: Do investors react to stale information?. The Review of Financial Studies, 24(5), 1481-1512.

    Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms` fundamentals. The journal of finance, 63(3), 1437-1467.

    Uhl, M. W. (2014). Reuters sentiment and stock returns. Journal of Behavioral Finance, 15(4), 287-298.

    UN (2004). Who Cares Wins — Connecting Financial Markets to a Changing World. Available at https://www.ifc.org/wps/wcm/connect/9d9bb80d-625d-49d5-baad-8e46a0445b12/WhoCaresWins_2005ConferenceReport.pdf?MOD=AJPERES&CVID=jkD172p

    Viererbl, B., & Koch, T. (2022). The paradoxical effects of communicating CSR activities: Why CSR communication has both positive and negative effects on the perception of a company’s social responsibility. Public Relations Review, 48(1), 102134.

    Wang, G., Yu, G., & Shen, X. (2021). The effect of online environmental news on green industry stocks: The mediating role of investor sentiment. Physica A: Statistical Mechanics and its Applications, 573, 125979.

    Xu, Y., Liang, C., Li, Y., & Huynh, T. L. (2022). News sentiment and stock return: Evidence from managers’ news coverages. Finance Research Letters, 48, 102959.

    Yao, Y., & Huang, Z. (2016, October). Bi-directional LSTM recurrent neural network for Chinese word segmentation. In International conference on neural information processing (pp. 345-353). Springer, Cham.

    Yong, S. H. I., Tang, Y. R., Cui, L. X., & Wen, L. O. N. G. (2018). A TEXT MINING BASED STUDY OF INVESTOR SENTIMENT AND ITS INFLUENCE ON STOCK RETURNS. Economic Computation & Economic Cybernetics Studies & Research, 52(1).

    Yu, Y., Duan, W., & Cao, Q. (2013). The impact of social and conventional media on firm equity value: A sentiment analysis approach. Decision support systems, 55(4), 919-926.

    Zeidan, R. (2022). Why don`t asset managers accelerate ESG investing? A sentiment analysis based on 13,000 messages from finance professionals. Business Strategy and the Environment.

    Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.

    Zhang, X. M., Xu, D., & Hong, H. (2021). Investor Attention or Investor Sentiment: How Social Media React to ESG?. D. and Hong, H., Investor Attention or Investor Sentiment: How Social Media React to ESG.
    描述: 碩士
    國立政治大學
    金融學系
    109352021
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109352021
    数据类型: thesis
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    202101.pdf1816KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈